

Programming Markovian Policies by Human Feedback

Riad Akrour

November 26, 2024

Personal Background

- PhD (2014) at Inria Saclay (TAU team) w/ Michèle Sebag and Marc Schoenauer
 - Topic: Preference-based Reinforcement Learning
- Postdoc 1 (6+ years) at TU Darmstadt (Germany) w/ Jan Peters and Gerhard Neumann
 - Topic: Entropy regularization in RL + Robotics
- Postdoc 2 (6 months) at Aalto University (Finland) w/ Joni Pajarinen
 - Topic: Reinforcement Learning and Computer Vision
- Researcher (ISFP, since 2022) at Inria Lille (Scool team) headed by Philippe Preux
 - Topic: Deep Reinforcement Learning

Personal Background

- PhD (2014) at Inria Saclay (TAU team) w/ Michèle Sebag and Marc Schoenauer
 - Topic: Preference-based Reinforcement Learning (PbRL)
- Postdoc 1 (6+ years) at TU Darmstadt (Germany) w/ Jan Peters and Gerhard Neumann
- Postdoc 2 (6 months) at Aalto University (Finland) w/ Joni Pajarinen
- Researcher (ISFP, since 2022) at Inria Lille (Scool team) headed by <u>Philippe Preux</u>
 - ANR project NeuRL: Neuro-Incremental Reinforcement Learning from Human Preferences
 - PbRL applied to crop management and precision agriculture
 - Research engineer hired in May 2024
 - PhD student started in October 2024

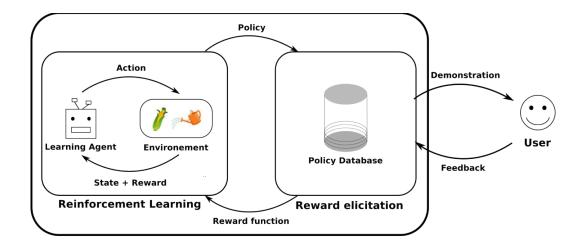
Successes of Deep Reinforcement Learning

- Deep RL has known several successes, especially in game domains
- Specifying a task in RL = defining a reward function

$$rg\max_{\pi}\mathbb{E}\left[\sum_{t=0}^{\infty}\gamma^{t}R\left(s_{t},a_{t}
ight)\mid a_{t}=\pi\left(s_{t}
ight)
ight]$$

Preference-based deep RL (this talk)

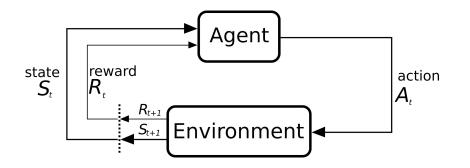
• Program the agent through higher level human feedback



Outline

- Deep RL in a nutshell
- RL with a human in the loop
- Deep Preference-based RL (PbRL) and key challenges
- ANR project NeuRL, PbRL applied to crop management
- Perspectives

Objective of Reinforcement Learning



• Objective in RL: maximize the policy return

$$rg\max_{\pi}J\left(\pi
ight)=\mathbb{E}\left[\sum_{t=0}^{\infty}\gamma^{t}R\left(s_{t},a_{t}
ight)\mid s_{0}\sim p_{0},\,a_{t}=\pi\left(s_{t}
ight),s_{t+1}\sim p\left(s_{t},a_{t}
ight)
ight]$$

• Environment modelled as a Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, R, p, p_0, \gamma)$

Useful Definitions in RL

• Q-function $Q^{\pi}(s, a)$: expected cumulative rewards when doing "a" in "s" then following π

$$egin{aligned} Q^{\pi}\left(s,a
ight) &= R\left(s,a
ight) + \gamma \mathbb{E}\left[Q^{\pi}\left(s',a'
ight)
ight] \ &\stackrel{\Delta}{=} \left(T^{\pi}Q^{\pi}
ight)\left(s,a
ight) \end{aligned}$$

- Policy improvement: if $Q^{\pi}\left(s,\pi'\left(s
 ight)
 ight)\geq Q^{\pi}\left(s,\pi\left(s
 ight)
 ight)$ for all $s\in\mathcal{S}$ then $J\left(\pi'
 ight)\geq J\left(\pi
 ight)$
- T^{π} called the Bellman operator
 - \circ It is a contraction with Q^{π} its unique fixed point
 - Let $Q_0: \mathcal{S} imes \mathcal{A} \mapsto \mathbb{R}$ an arbitrary function of the state-action space

$$lacksquare$$
 and $Q_k = T^{\,\pi} Q_{k+1}$, then $\lim_{k o\infty} Q_k = Q^{\pi}$

Deep RL in a Nutshell

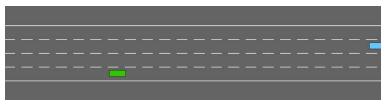
- Randomly initialized neural network Q_0
- Repeat

$$\begin{array}{ll} \circ & \text{Set } \pi_k(s) = \arg\max_{a \in \mathcal{A}} Q_k(s,a) \text{ or } \pi_k = \arg\max_{\pi} \mathbb{E}\left[Q_k(s,\pi\left(s\right))\right] & \text{\# Policy improvement} \\ \circ & \text{Fit } Q_{k+1} = \arg\min_{Q} \mathbb{E}\left[\left\|R\left(s,a\right) + \gamma Q_k\left(s',\pi_k\left(s'\right)\right) - Q(s,a)\right\|_2^2\right] & \text{\# Apply (empirical)} \\ & \text{Bellman operator } \hat{T}^{\pi} \end{array}$$

- <u>Deep RL in practice</u>
 - Can work well and solve decision making tasks with high dimensional state-action spaces
 - Can be unreliable (large variance across seeds, large performance oscillations/collapse)
 - Slow (can take several hours to several days on current GPUs)

RL with a Human in the Loop

Reward Specification in RL (1/2)



highway-v0, E. Leurent et al. 2018

- **Reward shaping**: rewards should be frequent enough to enable learning
- **Multiple objectives**: rewards trade objectives that are often conflicting
- Sensitivity and threshold effect: slight reward modifications can lead to large behavioral changes
 - Tuning the rewards is often a trial and error process

Reward Specification in RL (2/2)

- **Personalization**: Some RL tasks call for personalized rewards
 - E.g. RL in healthcare

"(...) specifying such a reward function precisely is not only **difficult** but sometimes even **inadequate** and **misleading**. Several threshold and weighting parameters are needed to provide a way for **trading off efficacy** and **toxicity**, which heavily rely on **personal experience** that varies from one to another."

Reinforcement Learning in Healthcare: A Survey, Yu et al., 2021

- <u>In summary</u>: Some tasks have a clearly defined reward function (rewards -> behavior)
 - In other tasks reward specification is a **reverse problem** (behavior -> rewards)

Learning from Expert Demonstrations (1/2)

- Remainder of the talk: solving **MDP\R** problems: $(\mathcal{S}, \mathcal{A}, p, p_0, \gamma)$
- **Approach 1**: Expert provides trajectories -> AI extracts policy reproducing these trajectories

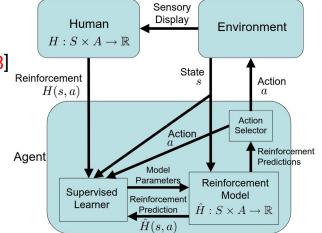
P. Abbeel et al.; Autonomous Helicopter Aerobatics through Apprenticeship Learning; 2010

Learning from Expert Demonstrations (2/2)

- 1. Behavioral Cloning
 - Demonstrations -> Supervised Learning -> Policy; but in general training data ≠ test data
- 2. Inverse Reinforcement Learning
 - Demonstrations -> Rewards -> RL -> Policy; can be an ill-conditioned problem
- 3. Imitation Learning
 - Behavioral Cloning++ with typically more interactions on MDP\R
- <u>Summary</u>: Learning from Demonstrations useful for automating tasks we know how to solve
 - Leaves little room for the AI to find novel solution

Learning from Granular Human Feedback

- Human feedback on state-action pairs interactively during training
- What type of feedback, and how to interpret it?
 - Reward or Q-function? [Knox & Stone, 10; Warnell et al., 18]
 - Action correction? [Cederborg et al., 15; Chisari et al. 22]
 - "Do this action in this state"
 - Relative action correction? [Celemin et al., 22]
 - "Increase the speed in this state"



Interactively Shaping Agents via Human Reinforcement; Knox & Stone, 2009

• Due to its granularity, often combined to other types of feedback: demonstration, reward function...

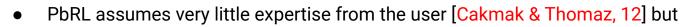
Preference-based RL (PbRL)

- Preferences on trajectories the learner chose to demonstrate
 - Preferences -> Rewards -> RL [Akrour et al., 14; Christiano et

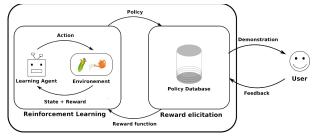
al., 17; Hu et al. 24

• Preferences -> Direct Preference Optimization [Fürnkranz et

al., 12; Rafailov et al. 23]



- Current (deep) PbRL methods require an unrealistic amount of feedback (500+)
- Research for the most part focused on simulated users
- PbRL a.k.a. RLHF; Latter mostly used for training LLMs [e.g. Rafailov et al. 23]; Not the focus of this talk



Schematic view of PbRL

Preference-based Reinforcement Learning

PbRL: General Overview (1/2)

- Focus on PbRL of type Preferences -> Rewards -> RL (most common [Wirth et al., 17; Celemin et al., 22])
 - Select policies π_1, π_2 maximizing an exploration/exploitation trade-off of the probabilistic reward model
 - **Request preference** feedback on pair of trajectories τ_1, τ_2 sampled from π_1, π_2 resp.
 - **Update** probabilistic reward **model** from preference feedback
- Exploration/exploitation of reward model
 - <u>Exploitation</u>, maximize the expected reward
 - <u>Exploration</u>, reduce uncertainty of the reward model
 - It is important to consider a <u>trade-off</u> of the two: we do not need to perfectly know the user's reward model to <u>maximize</u> it

PbRL: General Overview (2/2)

- Key question in PbRL: what policy selection criterion to find best policy with minimal user feedback
 - Similar questions as in preference elicitation, duelling bandits, Bayesian optimization,
- Practical challenges
 - How to **model** the rewards and their uncertainty in high-dimensional spaces?
 - How to **maximize** the policy selection criterion? RL?
 - How to deal with the sample inefficiency of deep RL?
- Lesser discussed challenges
 - Most PbRL benchmarks measured with synthetic (simulated) users
 - Understandable for reproducibility of experiments, but little is known on adequacy with ground truth

User and Reward Modelling

- The user response models the probability of the user preferring au_1 over au_2 which we denote $au_1 \succ au_2$
- Most common choice is the Bradley-Terry model [Bradley et al., 51]

$$P\left(au_1 \succ au_2; \hat{R}
ight) = rac{s\left(au_1; \hat{R}
ight)}{s\left(au_1; \hat{R}
ight) + s\left(au_2; \hat{R}
ight)}$$

• s is a score function that maps trajectories to positive reals

$$s\left(au_1=(s_0,a_0,\ldots,s_{H-1},a_{H-1});\hat{R}
ight)=\exp\left(\sum_{t=0}^{H-1}\gamma^t\hat{R}\left(s_t,a_t
ight)
ight)$$

• \hat{R} is a reward model mapping the state-action space to real values, e.g. can be a neural network

Training the Reward Model

• Given a dataset of trajectory pairs and associated ground truth probabilities

$$\mathcal{D}_k = ig\{ig(au_1, au_1',\mu_1ig),\dots,ig(au_k, au_k',\mu_kig)ig\}$$
 with $\ \mu_i = igg\{igl(au_i \succ au_i' igc),\dots,igl(au_k, au_k',\mu_kigr)igr\}$ with $\ \mu_i = igg\{igl(au_i \succ au_i' igc),\dots,igl(au_k, au_k',\mu_kigr)igr\}$

• Reward model \hat{R} is then trained by minimizing the cross-entropy loss

$$\ell\left(\hat{R},D_k
ight) = -rac{1}{k}\sum_{i=1}^k \mu_k \log P\left(au_i \succ au_i';\hat{R}
ight) + (1-\mu_k) \log P\left(au_i' \succ au_i;\hat{R}
ight)$$

- We also want to model reward uncertainty
 - Use an ensemble of neural networks [Christiano et al. 17; Lee et al. 21]
 - Bayesian modelling with MCMC sampling [Biyik et al., 19]

Query Selection in PbRL (1/3)

- Given a distribution over reward models, what two policies should we show the user? <u>With what objective</u>?
- <u>Preference elicitation</u> view: maximize the Expected Posterior Utility (EPU) [Viappiani & Boutilier 20]
 - \circ Let $U = \{ au_1, \dots, au_N\}$ be a set of trajectories we can choose from
 - \circ Preference elicitation aims at finding the most preferred item in the set U
 - \circ Let P_k be the probability distribution over reward models after observing k user preferences
 - Define the Expected Utility (EU) and EU* as

$$\mathrm{EU}\left(au;P_k
ight) = \sum_i P_k\left(\hat{R}_i
ight) s\left(au;\hat{R}_i
ight) \qquad \mathrm{EU}^\star\left(P_k
ight) = rg\max_ au\mathrm{EU}\left(au;P_k
ight)$$

 \circ Let q=(au, au') be a query, $r\in\{\succ,\prec\}$ a user response and $P_k^{q,r}$ the belief after observing (q,r)

• Then the Expected Posterior Utility (EPU) of a query is

$$\mathrm{EPU}\left(q
ight) = \sum_{i}\sum_{r}P_{k}\left(\hat{R_{i}}
ight)P\left(q,r;\hat{R_{i}}
ight)\mathrm{EU^{\star}}\left(P_{k}^{q,r}
ight)$$

Query Selection in PbRL (2/3)

- Maximizing EPU is myopically (one-step ahead) optimal
 - The expected utility will be the highest possible after one query, but expensive to compute
- Let r(q) be the selected (preferred) trajectory in the query
- Expected Utility of Selection (EUS) of a query defined by

$$ext{EUS}\left(q
ight) = \sum_{i} \sum_{r} P_k\left(\hat{R}_i
ight) P\left(q,r;\hat{R}_i
ight) s\left(r\left(q
ight);\hat{R}_i
ight)$$

- EUS quantifies the expected utility of trajectories in *q* (recommendation set)
- For some user response models maximizing EUS is equivalent to maximizing EPU [Viappiani & Boutilier 10]
 - Query set = Recommendation set
 - Intuition: a good recommendation set needs to contain diverse elements which makes for a good query
 - EUS much easier to maximize than EPU
 - If we maximize over set of policies instead of trajectories, can only maximize a lower bound of EUS

Query Selection in PbRL (3/3)

- Query selection in PbRL can alternatively be based on Posterior Sampling [Novoseller et al., 20; Wu et al., 24]
 - \circ Sample reward functions $\hat{R} \sim P_k \; \hat{R}' \sim P_k$ from current belief
 - \circ Find policy maximizing the policy return $\pi = rg \max_{\pi} J\left(\pi; \hat{R}
 ight)$ and similarly for π'
 - Sample trajectories $au \sim \pi$, $au' \sim \pi'$ and present query q = (au, au') to the user
- Theoretical guarantees of finding the most preferred policy [Novoseller et al., 20]
- Can use the previous policy for τ to solve only one RL problem between queries [Wu et al., 24]
- Solving an RL problem $\pi = rg\max_{\pi} J\left(\pi; \hat{R}
 ight)$ between each query is challenging in a deep RL setting

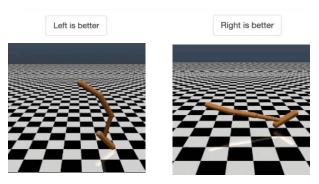
Deep PbRL: Quick Overview

Deep PbRL: Main concessions

- [Christiano et al., 17] is one of the first deep PbRL implementation
 - Also included a large scale study with non-expert human users (contractors)
- Main concessions to scale PbRL to the deep setting:
 - **Passive query set generation**: stochastic policy maximizing average reward, store trajectories in a replay buffer, queries sampled by picking trajectories from the buffer. <u>Enough diversity</u>?
 - **Uncertainty quantification**: fit an ensemble of three neural reward models on same data, difference in prediction stemming from difference in initialization. <u>Capturing reward uncertainty</u>?
 - Simple query selection: select a batch of trajectories that maximize probability disagreement, i.e. variance of $P\left(\tau \succ \tau'; \hat{R}_i\right)$ for different reward models. <u>Over explorative</u>?

Deep PbRL: User Study

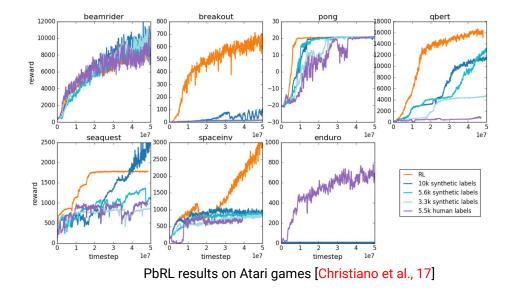
- In [Christiano et al., 17], contractors presented with task instructions or asked to play an Atari game for 5mn
 - Users periodically shown short trajectory clips
 - Instructions insist that feedback should be about actions in the clip, not situation agent is in (e.g. number of lifes in Atari tasks)
 - Takes users 3-5 seconds to provide one feedback
 - Training required 30mn to 5 hours of human time per task
 - User model: Bradley-Terry + constant noise



Deep Reinforcement Learning from Human Preferences [Christiano et al., 17]: teaching a task (backflip) from feedback that is hard to describe with a manually defined reward function

Deep PbRL: Experiment Results

- User feedback nearly as good as synthetic feedback with true reward model
- On *enduro* human feedback improves reward shaping
- PbRL + human feedback failed on *qbert* because game is too abstract



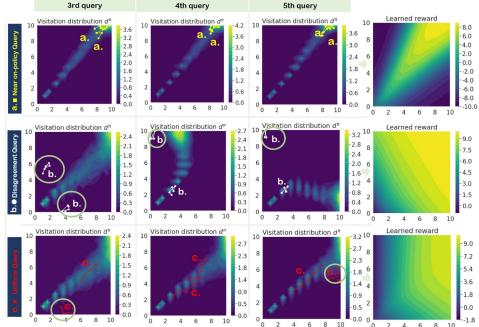
• Preference complexity likely too high in practice, was distributed among several users defeating the purpose of personalisation

Pre-training with Intrinsic Motivation

- One of the main concession of deep PbRL is that queries are not actively generated but sampled from a buffer
 - Quality of queries might decrease if buffer lacks diversity (especially true initially)
- Instead of starting PbRL from scratch, we can let the AI autonomously explore the MDP
 - Use **artificial curiosity** [Oudeyer et al., 07; Schmidhuber et al., 10] to fill the buffer with diverse trajectories in the absence of reward function
- [Lee et al., 21] proposed to maximize state entropy in the buffer as an intrinsic reward
 - \circ Use intrinsic reward $r\left(s
 ight)=\log\left|\left|s-s^k
 ight|
 ight|$, where s^k is the nearest center following a K-NN clustering
 - Shown to improve feedback efficiency compared to baseline on several robot locomotion tasks

On-policy Query Selection

- Probability disagreement is too explorative: the goal is not to learn a uniformly accurate reward model
- [Hu et al., 24] propose to limit the query buffer to the most recent trajectories
- Query selected randomly from the buffer
- Single reward model learned (uncertainty not needed)
- Performance improves over baselines
- Corresponds to **pure exploitation**, noise in the query resulting purely from policy noise
- Queries hard to rank by human?



Query-Policy Misalignment in Preference-based Reinforcement Learning [Hu et al., 24]

PbRL for Crop Management (ANR NeuRL Project)

RL Environment for Crop Management

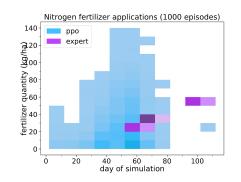
- [Gautron et al., 22] developed gym-DSSAT, an RL environment built on top of the DSSAT simulator
 - **DSSAT** simulates crop growth for 42 crops and is in use for over 30 years
 - Gym wrapper: allows the use of off-the-shelves deep RL algorithms for precision agriculture tasks
 - Collaboration between Inria Scool and Cirad (a French Agricultural Research Center)
- Precision agriculture tasks over several crop types and weather conditions gathered from real data
 - Actions include deciding when to plant, and when/how much to water and fertilize the crop
 - Can be used as a decision support system, but what is the <u>reward function</u>?

PbRL for Personalized Crop Management

• Some performance indicators in gym-DSSAT that can be used in the reward function [Gautron et al., 22]

variable	definition	comment	expert	РРО
grnwt	grain yield (kg/ha)	quantitative objective to be maximized	3686.5 (1841.0)	3463.1 (1628.4)
pcngrn	massic fraction of nitrogen in grains	qualitative objective to be maximized	1.7 (0.2)	1.5 (0.3)
cumsumfert	total fertilization (kg/ha)	cost to be minimized	115.8 (5.2)	82.8 (15.2)
—	application number	cost to be minimized	3.0 (0.1)	5.7 (1.6)
	nitrogen use efficiency (kg/kg)	agronomic criteria to be maximized	22.0 (14.1)	28.3 (16.7)
cleach	nitrate leaching (kg/ha)	loss/pollution to be minimized	18.0 (12.0)	18.3 (11.6)

- With canonical gym-DSSAT reward and a deep RL method we obtain the following compromise? Is it desirable?
- Beyond supporting decision making, studies have shown that farmers can internalize new knowledge from a DSS [Evans et al., 17]
- PbRL can personalize the decision support system and generate knowledge by exploring new strategies



Towards Feedback Efficient Deep PbRL

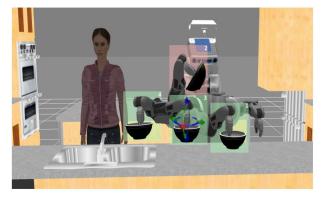
- Current deep PbRL methods need 500+ human feedbacks to work likely too much for our task
 - Orders of magnitude higher than non-deep PbRL with active query generation [Wirth et al., 17]
 - Need reliable and efficient deep RL algorithms to optimize query selection objective
 - Reliable: entropy regularized deep RL with growing neural nets = avoid catastrophic forgetting?
 - **Sample efficient**: reuse transition data with model-based RL?

Richer Human Feedback with Interpretable RL?

• Beyond preferences over trajectories users can provide

feedback directly at policy level

- In some tasks (e.g. robot object manipulation on the side), policies have an interpretable structure (e.g. a set of waypoints) that can be easily modified by a user
- Interpretable RL could be a general way of learning compressed, human readable policies on which feedback can be given
 - \circ ~ E.g. "I'd do/avoid these actions in these situations"



Learning Preferences for Manipulation Tasks from Online Coactive Feedback [Jain et al., 15]