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Motivation for this Work: Computational Systems Biology

» Cells process signals
« Take decisions such as
— Change of metabolism
— Cell differentiation
— Replication, cell division
— Moving
— Apoptosis
« Control the execution of those processes ‘ ,
Programs? Information encoded in molecular concentrations, Chemical Reaction Networks (CRNSs) [Feinberg 1977]
» Analog computation with proteins: continuous concentration levels, continuous time, CRN interpreted by ODE
« Analog programs defined by (digital) gene expression through the presence or not of gene encoded proteins
Systems Biology: model cell processes with CRNs, understand natural CRN programs and their function
Synthetic Biology: design CRNs to implement particular functions (in reactors, artificial vesicles or cells).

Turing completeness theorem [F., Le Guludec, Bournez, Pouly, CMSB 2017] Any computable real function can be
computed by an elementary CRN (mass action law reactions with at most 2 reactants) with ODE interpretation.
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Outline of my Talk

1. Chemical Reaction Networks as a programming language
— Syntax: reactions with rate functions
— Hierarchy of semantics: continuous ODE, stochastic CTMC, Petri Net, asynchronous Boolean transition system

2. Learning protocol for inferring CRNs from time series data
— Example of videomicroscopy data
— Simulation traces obtained from a hidden CRN

3. Global approach: SINDy non-linear regression algorithm for learning ODE models
— Failures on simple simulation examples

4. Local approach: Reactmine stochastic search algorithm for learning CRN models
— Results on simulation examples

5. Sufficient conditions for the correctness of SINDy Lasso regression

6. Conclusion and on-going work
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1. CRN Syntax

Let S = {x, ..., x;} be a finite set of molecular species.

Def. A reaction is a quadruple (R,I,P, f),alsonoted R / | £> P

where R (resp. !, P) is a multiset of reactant species (resp. inhibitors, products)

and f:R3 — R, is a rate function (kinetic expression).

« Multisets are represented by linear expressions with integer stoichiometric coefficients

« Areaction catalyst is a molecular species that is both a reactant and a product (can also be an inhibitor).

E.g. reactions with exL ™
27
 Mass action law kinetics Z"i XL T P
J

° i T i ; Vxaz/(K+z)

Michaelis-Menten kinetics x5,
+ Hill kinetics 2Ty
- Negative Hill kinetics 0/c "ESTy
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Well-formed Reactions

Def. Areaction (R,I,P, f) is well-formed if
« f:R3 — R, is a partially differentiable function

* x; € Rifand only if%(x) > (0 for some value x € R

« x; €1 if and only if%(x) < 0 for some value x € R3.

Def. A reaction is strict if R(x;) > 0 implies f(x4,...,x;) = 0 whenever x; = 0.

Prop. The ODE associated to a well-formed and strict reaction system (CRN) defines a positive system.

F., Gay, Soliman. Inferring Reaction Systems from Ordinary Differential Equations. Theoretical Computer Science, 599:64—78, 2015.
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Hypergraph Structure of a Reaction System

Standard representation of a hypergraph by a bipartite species/reaction graph.

k.B
B—>B+C

k.C
C >0

k.A
A—o A+C
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CRN Semantics

One given reaction system {(R,, I, B., f) },ec can be interpreted in different formalisms:

Continuous interpretation by ordinary differential equations (ODE) on x € R3 .

dxl-
= N Bl — (). () |
T€CRN wl 5 - i Ei—
« Stochastic interpretation by continuous-time Markov chain (CTMC) x € N3 - W
X2=R p=MT=Exp(L)
" Zfri(x), Zfri(x)
x St S | Wi Ve Wl

Rate-independent non-deterministic discrete interpretation by Petri Net (PN) x e Ni

X=R,
x — x —R,+PF

Rate-independent asynchronous Boolean state transition interpretation x € BS

X=R,, x<P, , _ — — , _
x —> x with @WA=R,)VP,.<x'<xVP,
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oolean traces

f

Petri net traces
I -« ODE traces

Thm. (abstract interpretation T) Galois connections
between the domains of syntactical, stochastic,
Petri net and Boolean trace semantics

Fages, Soliman. Abstract Interpretation and Types for Systems Biology.

Theoretical Computer Science, 403(1):52—70, 2008.

CTMC traces

|

Reaction set

Thm. (approximation A) (Gillespie 1971 Kurtz 1978, 19921 When the
volume tends to infinity the ODE trace approximates the
mean stochastic trace

Thm. (equality) Buscemi Fages cmsB 2024) Under graphical

o, conditions on the ancestors of polymolecular reactions,
“““ ., { the ODE trajectory equals the mean stochastic trace.

Animal model **° *+ Synthetic microreactor
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Compiling Cosine(time) in BIOCHAM ‘

biocham: compile from expression(cos,time, f). ODE: 73
initial_state(f_p=1). d; =f_p—fastx A_mx A_p
MA(1.0) forf p=>A m+f p. dA_p _ AR A
MA(1.0) forf m=>A_p+f m. dt
MA(1.0) forA p=>A p+f p. dj;m =A_m-— fastx f_mx* f_p
MA(1.0) forA m=>A m+f m. df p
MA(fast) for f m +f p=> . g _Ap—Jestxfmxfp
MA(fast) forA m+A p=> .

ODE simulation (for CRN design) Stochastlc CTMC simulation (for CRN testing)

1

1.

0 —fp 0:

||||||||||||||||||||||

mol/l
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http://localhost:8888/notebooks/library/examples/cmsb_2017/cosine.ipynb

2. Single Cell Videomicroscopy Data (67 cells during 48h)

i
.

Pauline Traynard, Céline Feillet, Sylvain Soliman, Franck Delaunay, F-
Model-based Investigation of the Circadian Clock and Cell Cycle Coupling
Mouse Embryonic Fibroblasts: Prediction of RevErb-alpha Up-Regulation
during Mitosis. Biosystem , 149:59-69, 2016.

» Markers of cell cycle and circadian clock

» Single “wild type” trace of single cells

« Noisy data, statistical analysis, clustering

» Unexpected entrainment of the circadian clock

Fluorescence (arbitrarFmits)

150

125

4 S
@ o

o
54 =]

0

200

by the cell cycle at different FBS in NIH3T3 fibro.
CRN model built from previous models of cell cycle”

and circadian clock and fitted to the data.
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Kinetic Model Learning Protocols from Time Series Data

Input:
« Vector of m observed variables ¥ = (x4, ..., x,,,) including time x,
« Set of n observed transitions {(x;,y7), ..., (x,,, v, )}

1. Either one single trace from one single initial state {(x7,v7), 01,¥2 ), c.o, Vn—1, Vn )}
2. Or multiple traces from multiple initial states

3. Possibly branching traces, e.g. (x;,; ), (¢, Vi )
Output:
« Kinetic model of interactions between the observed variables (no latent variable)

1. Either a deterministic ODE model {x; = f; (%) }%,
2. Or CRN model {R; —-"i P;}i_, interpreted by det. ODE, non-det. CTMC, Petri net or Boolean semantics.

. . . . p . m
3. Particular case of influence model with forces {x;, - x;, + x;.}.  {x;. + x;, 2V x;.}.
Ji Ji ili=1 i i JiJi=p+1

* Reproducing the input traces by simulation
* Plus generalizing them for different initial states
« Infering an explainable non-overfitted sparse model with few reactions, i.e. f;'s made of few terms.
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3. Global Approach, e.g. SINDy Sparse Regression Algorithm

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, pages 3932—-3937.

Reconstructs an ODE system from transition traces, as weighted sums of library functions
(e.g. monomials of degree at most 2, i.e. mass action law kinetics for reactions with at most 2 reactants)

V = 0(Y)E 9)

©(Y) € R"*P is a library of p functions constructed from the input variables Y including, for instance, first to
k -order polynomial interactions, e.g. Yo j ©® Y, j the sin and cos functions, e.g. sin(Y, ), or even more sophisticated
user-defined functions. The dynamics of each variable is then captured by a weighted combination of library members,
the weights being encompassed in =. Because it is thought that the expression of the dynamics should be sparse within

the library ©(Y'), SINDy proposes to obtain = using sparse regression.
E = argmin ||V — O(Y)E|% + A|E|1 (10)

EeRp Xm

SINDy approximates the observed velocities and ensures sparsity by minimizing the sum of absolute values
(Lasso regression) with one single hyperparameter 1
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Concentrations (arbitrary units)
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Failures of SINDy on one Single Trace from Simple Reactions

=3
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Name Hidden CRN CRN inferred by Reactmine ODE system inferred by SINDy
0.99869
1 1.00041 )
A -1* B 0.99836 A= =1.004
B =1.00A - 1.00B
i Y b C =1.03B — 1.03C +0.01D — 0.06AB
CSuD p Loowz D =033B - 0.64DE
D 1 B 0.99753 E=1.00D
¢ 1.00069
1.00107
0.99958
1.00005
1
A—-B 0.99748
B l) C o 0.99243 A=-1.004A+1.03F —0.006D — 0.0TAE — 0.06DE
- Ko B =1.004 — 1.00B +0.004C + 0.001AB — 0.211AC — 0.092BC
Loop cLp C — C =1.14B — 1.18C —0.002D — 0.17AB + 0.39CD
DL 0.99156 D =0.35B - 0.35E
T) D 0.99771 E =0.39C +0457F — 4.21AF
E—=A 0.92045
0.99758
1.00007
2.00109 g 7 3A
A . e o F k18 o2 IR GTEE B 0003 o035 8 A0
=1 02767 A
Reactant 5, Lootor, 180N H G0 XS ob B3E AR 24524 B 0anc
Parallel gl & 0.00526 C = —2.20D +0.02E — 0.19AD + 0.40DE
A+C 29, g o D =0.07A +1.96D + 1.02E —0.06DE
95790 E=-1.00E
2.93602 § = 60 93C
AL CS B4C RS —6 841 28877 4190.6
Produet .72/ . iﬁi%“%?ﬁ TR R AC S AR b srcp
Parallel = 2.08438 7919.39
C>E A+C 2%, g o 115)7 L 77885.60F — 4258.48AC
2 touma ¥ S ?8%%4 gg}l‘E %%g%SD

-
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No sparse ODE system with a good loss function is inferred for any value of A

SINDy loss
—
10
bl ’ a '_"‘.
Reactmine loss
il 102 an :“Jt
D] Ground truth loss 55
‘4:. ------------------------------------------------------------------- \__—.‘..;
¢|: Gl E’i:
~ 10! 2§
= 58
— i
i
-4
Ground truth sparsity
d hdbabababadabababababababababatatsbhabadababatatabatatababadtatatatada) Sxtcbhabhabababaatababababatadabatatababatatatabatatabatadt st s tadad s ‘.‘“
Reactmine sparsity
10-*
SINDy Sparsity
|

10-¢ 10-* 102 1P
A regularization threshold
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4. Local Approach: Reactmine Search Algorithm

1) Sequential inference of Ar
 reactions with kinetics (e.g. mass \ /
action kinetics at most two reactants) \

« on some transition support where the
preponderant changes can be paired
in one preponderant reaction.

- ranked by kinetics of lowest variance. B/
* trace update by subtraction of the C PO e
inferred reaction [ )
2) Final global parameter re-optimization L E
k//////Z?7;7ikij\\\\\\‘\““‘\~\\\\\\+ B IR N MR Y
jic f1$ic+D A—l>f+C (’/Q’AE\}
j:E DLE DLE AL B yD\)
._f:—l:D cﬁfu CjiD BjiD K BLC ,;:_[B
Lo B ¢ BLc Cc*D+E CHD+E cHD AL ALB+E AL B BLC+E
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Reactmine: Variance-based Search Algorithm

At each node of the search tree with bounded depth < y (i.e. maximum number of reactions to infer)

1) For each observed transition infer a reaction skeleton on concentration changes with highest velocities

. ~ ~ 'f)l Z _ . ~ ’i}l,imax
M — aremax |9 Uy . = R&(tl)—{ze{la---,m}, 07, <0, - <5} - : -
z gmax [B;| - Vi = — ol . with velocity ratio < § < 8,44
1<k<n N
V] ;max
Ps(t;) = {iE{l,...,m}, 01, > 0, l’f <5}
Ul,i
: . . . . : 2 Uy P
2) Rank reaction candidates (k, R, P) according to kinetic variance < a  d; = | Z vl — k)

leT(r) [licrytu

on their supporting transitions T'(r) = {l € {1,...,n} | 36 € [1, dmax), 7* (t;) = (R, P)}
3) Create successor nodes for < 8 best kinetic variance candidates and subtract reaction effect on the trace

4) Finally, optimize the inferred kinetic parameters on the whole trace k= aiglélln IV —F(Y,k)S|%
€ P

Four parameters: ¥, dpax, @, B.

Bordeaux 2024 T s oot
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Computational Complexity of Reactmine

4 hyperparameters a, 8,7, Smax

n species, m observed transitions.

Proposition. The computational time complexity to infer one reaction (R, P, f) is O(nmJ) where n is the number of
time points, m the number of species, and J = |R U P|. The global time complexity of Reactmine is O(3"nmJ).

Proof. Inferring the reaction kinetics constant involves the computation of a mean for each species present in the
reaction (Equation [4}, which is O(nJ). In the worst-case, a lookup for a catalyst species is necessary, at a cost of
O(nJm). The update of velocities performed in Equation @ is O(nJ). Generating reaction skeletons requires the

computation of the species displaying highest absolute variations for each time point, which is O(nm) After that, the
sets Rs(¢) and Pj(%) are obtained with a bounded number of § values. The time complexity for the inference of one

reaction is therefore O(nmJ).

Since the depth of the search tree is bounded by v and each node has at most 3 children, the time complexity of
Reactmine is thus O(B"nmJ).
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Results of Reactmine and SINDy on MAPK cell signaling CRN

A
Ap+B 2% ApB
ApB =2 Ap+B
ApB 209 Ap + Bp
Ap+ Bp 2000, ApBp
ApBp 208 Ap + Bp
ApBp Lo Ap + Bpp

0.0045 Ap

« Reactmine succeeds in reproducing traces with

0.00449
A—— A
0.0045

499.96702
499.96702
500.01 l.—'..

B+ Ap —

500.01476
150.04220

ApB ———— Ap + Bp
150.03923

501.19113

Ap+ B ————

501.19119

150.37064
AN Ay B
150.36767

517.78303
Ap+ B
P P 1778581

155.33508
155.32578

Bp+ A Bpp + Ap

> _'1‘{)

ApB
ApB
ApBp

ApBp Ap + Bp

Ap+ B =220, ApB + B

o00. 18851

[ Bpp = 11764.89 — 9818.81 Bpp — 21809.21 Ap — 64774.82ApBp — 9881.63Bp
+109653.06 ApB — 10102.578B — 23028.83A + 23087.90Bpp x /ép
+47383.24Bpp x ApBp + 0.01Bpp x Bp — 94598.54%@ x Ap
+0.05Bpp x B + 24104.25Bpp x A + 58119.14Ap x Bp
+117674.081§p x B + 68314.42ApBp x Bp + 239788.36 ApBp x B

. —171491.97Bp x ApB + 0.03Bp x B + 45027.82Bp x A + 118690.34B x A
Ap = 0.003Bp — 0.001Bpp x Bp — 0.004Bpp x B — 0.002Bp x B
ApBp = —0.002Bp + 0.001Bpp x Bp + 0.004Bpp x B + 0.002Bp x B
Bp = —11345.814 + 9469.533_}:5 + 20253.98A%+62939.32Ap3p
+9525.97Bp — 105529.77 ApB + 9401.398 + 22299.11 A
—21772.25Bpp x Ap — 45730.13Bpp x ApBp — 0.01Bpp x Bp
+91003.53Bpp x ApB — 0.05Bpp x B — 23476.51Bpp x A
—56249.34Ap x Bp +996.55Ap x B — 64537.43ApBp x Bp
—113908.83ApBp x B + 163092.38 Bp x ApB — 0.03Bp x B
) —42276.50Bp x A + 113704.11ApB x B — 763.549B x A
ApB =10
B = —668.78 + 557.8335plp + 1724.07A8 + 2552.29/‘1‘pr
+564.79Bp — 5063.51 ApB + 551.208 + 784.94
—1609.99Bpp x Ap + —1960.37Bpp x ApBp — 0.00l[/?fp x Bp
+4399.19Bpp x ApB — 0.01Bpp x B — 827.38 Bpp X
—3441.84Ap x Bp + 543.68Ap x B — 4279.75ApBp x Bp
—8537.02A§Bp X B+ 10869.4535 x ApB —0.0031%) x B
—3146.138Bp x A + 6610.523ApB x B + 1384.4638 x A

\ A=0

and 1 approximation

« SINDy fails not only on sparsity but also on reproducing simulation traces.
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Results of Reactmine on Videomicrosopy Data
Discovery of G2—>Rev and G1-2>G2 as influences with max mean effect

’ B Mean effect C Z Z f(y(C)

10! B Occurences ‘ c=1 1=1

w
ﬁ

<

)
Occurences across the 67 cells

S
1

10!

Reaction effect u,

&

102

S

1073

1074

N N N N N

s 0 Y 0 0 @ & 0 & 0o @ o Y o Y 0o 0 Y oa@m 6 Y 0o 0
P S S - S U S SR N SU S
Y 18 18 s 0 >3 2 o 0O 1 oo g Q

N O o o N o Q S + o (D+.—|(D¢E

(4] x « © 0 1 + O ~ £ 4 = G I o

$ . 5 © 4 g | Z 4oz :

Ram)
O ) 0 o o

Figure 3: Results of Reactmine on fluorescence videomicroscopy dataset. a Plot of 3 cells among the 67 cells of
the videomicroscopy data. Traces have been smoothed with a moving average. b Ranking of mean effect (green) and
occurences (red) of inferred reactions on 67 cells. Bars in green report the mean effect of each reaction across time and
cells in the videomicroscopy data. Standard deviation is computed across the cells.
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5. Correctness of Lasso Regression [Yu Zhao 2006]

For each sample, The Lasso estimates 3"()\) are defined by A"(\) = argmin {||Y;, — X,,8/12 + \||8]|1}
BERP

For 2 = 0, if X,, of full rank we have a closed form solution g = (XIX,)~'XIy,

Let X,,(1), X,, (2) be the columns of X,, multiplied by non-zero/zero 8 coefficients and C™ = %XnXZ{
relevant/irrelevant " — ( Cii Ci )

The Strong irrepresentable Condition )05‘1 (CTy) ™" sign <ﬁ(‘1))) <1 G

expresses low correlations between the predictors in the model and not in the model

Theorem [Yu Zhao 2006] Sufficient condition for correctness of Lasso model selection with exp rate in n

For fixed q and p , and under regularity conditions (1) and (2), Lasso is strongly sign consistent if the Strong
Irrepresentable Condition holds. That is, when Strong Irrepresentable Condition holds ,¥A, that satisfies
An Ty 0 and — A% — 400 with 0 < ¢ < 1, we have :

n(l+c)/2

P(B™(An) =5 B) = 1 — O(exp(—n°))

1

Where the conditions (1) and (2) are: C™ = C - lrgfxécn((:v:‘)Txf) =0

Bordeaux 2024 e



Multi-traces on a Combinatorics of Initial Conditions

To make SinDy work, we concatenate m traces stemming from different initial conditions. The resulting input
matrix when the library function is the products of concentrations is of the form:
z1(0) 230) - 2}(0)h(0)

O(X,) = x%((n;l)At) xé((n;nAt)
z1(0) z3(0) .o 22(0)z3(0)

o7 ((n—1)AY) 2p((n - 1)AY)

where: z} (IAt) is the concentration of species k at time At on the i-th trace.
n is the number of time points

ns is the number of species (used later)

At is the time step

Bordeaux 2024 tormeticn Fmotnemaris
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Graphical Conditions for Correctness of Lasso Regression

Type 1 CRN: Atmost One Reactant per Reaction on Multitraces with 1 Non-zero

Theorem

For a CRN of type 1, suppose we concatenate the traces as above and choose the optimal library function.
Suppose also that the time step is such that AT =, _, 0(%). Then Zhao’s irrepresentable condition holds for

a big enough n where n is the number of time points.

Proof
m n-1 1 l
CT.1(4,5) = —ZZX}” lAT)Xk(lAT) Xfan ZX}” )by Cesaro lemma
k‘ 11=0
- X"(O) X;5(0)
_ _Z Xk Xk n—00
Cr.(i,j) — E,, [X," (0)X J" (0)]by dominated convergence theorem
1 X ’ n—00
- [_<Xf’ Xk)]
n
?1';__)0‘0'>Ip (Cll)lml‘p
31(6,5) —— En [XF (0)X55(0)] C31(1,§) —— 0 |C3,(CT,)~ 8| < 1 forlarge enough n
! n—oc ' ’ n— oo
Bordeaux 2024 7 s mananati



Type 2 CRN: At most 2 Reactants per Reaction
on Multitraces with 2 Non-zero Initial Conditions

Multitraces with at most two non-zero initial conditions 1 0 0 0 0
1 1 0 0 O
=11 0 1 0 O

if C™(i,7) has 3 or 4 species :

Cry ——> Em | XE (0)XE (0)XE (0)] =0
if C™(i,7) has 2 species :
1 2

cr. Em[X'”' &1 xk ] ST - 2 € (1,2
1,7 ;::g) ai(O) aj (0) m ns(ns + 1) €1,€2 € ( )

Non-sparse covariance matrix
Yu & Zhao'’s correctness condition may be not satisfied

if C™(i,7) has 1 specie :

nooo__
C1,1 =

A D'
D LI, .,y

2

Bordeaux 2024 ntormetics Fmatnemotis
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SINDy on Multiple Traces with 2 Non-zero Initial Conditions

Ground Truth | Simple trace Multiple trajectories Ground Truth | Simple trace Multiple trajectories
Equation | Rate | Equation | Rate | Equation Rate Equation | Rate | Equation | Rate | Equation Rate
A—- B 1 A—- B 1.00 | A-> B 1.00 A— B 1 A-B | 100 | A—B 1.00
B->C 1 B->C 1 B-C 1.00 B—-C 1 B—-C | 100 | B->C 1.00
C—-D 1 C—-»>D |048 | C->D 1.00 C—D 1 C—-D | 100 | C—-»D 1.00
D->E 1 D+E—- |102 | D> E 1.06 D - FE 1 D—-FE |100 | D->FE 1.00

E— A 1 E—-A | 100 | E—-A 1.00

Ground Truth | Simple trace Multiple trajectories Ground Truth Simple trace Multiple trajectories
Equation | Rate | Equation | Rate | Equation Rate Equation | Rate Equation | Rate | Equation Rate
A—- B 1 A-»B | 101 | A->B 1.01 A—- B 1 A— B 1.01
D—-C 2 D—-C 1.99 C—D 2 C—-D 2.04
E—-C 3 E-C 3.01 C—->FE 3 C+D—-FE |07 | C—>FE 3.06

Ground Truth Single trace Multiple trajectories

Equation Rate Equation Rate Equation Rate
B+D—-FE| 03 B+D—-FE 0.3

2A - B 0.1 |[2A—->B+C | 0.20 2A - B 0.1

A-C 0.2 A+FE — 0.16 A-C 0.2

C—-D 013 | C+D—-> A | 0.09 C—D 0.13

Bordeaux 2024 h,




Conclusion

Global approaches such as SINDy, using sparse regressions such as LASSO, are correct if the library terms
are uncorrelated [You Zhao 2006]

« Theorem: conditions satisfied for at most monoreactant systems (e.g. positive influence systems),
on data about the first transitions observed from many initial states with one non 0 variable

« First transitions observed from many initial states with few non-zero values are more informative
already seen for PAC learning of Boolean influence models [Carcano Fages Soliman CMSB 2017]

« Multitraces from sparse initial states improve results but are unrealistic in biology

Local approaches such as Reactmine search for preponderant reactions in some supporting transitions
« Single trace multireactant experiments: successes on synthetic time series over a few variables

« Absence of inference of latent variables is a strong limitation

« Limited to deterministic ODE-CRN dynamics
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Future Work on Reactmine

» Periodic reoptimization of the kinetic parameters of inferred reactions rather than final reoptimization ?
« Use beam search (i.e. A* with bounded frontier) to scale up beyond 7 reactions?

» Infer latent variables on contradictory (non-deterministic) transitions?
— Videomicroscopy data are limited to a few markers
— Latent variables are thus needed in the CRN model to reproduce the traces

« Consider stochastic interpretation of CRN (Continuous Time Markov Chain semantics)?
— To infer CRN models of branching processes
— E.g. infer model of cell differentiation from RNAseq data
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Reactmine Computation Times with Hyperparameter Gridsearch

e Commm e o e . G
a € {0.005,0.01,0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.5)

Chain 002,7,3,4) 031 128 2ELLDen 8) 3035.95
v € {3,4,5,6}
a € {0.005,0.01,0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.5)

Loop 002,7,3,6) 4078 4198 SEUSOT, 8) 30643.19
v € {3,4,5,6}
a € {0.005,0.01,0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.5)

Reactant-Parallel  (0.02,4,3,5) 181 265 SEUDS 7.8) 970.23
v € {3,4,5,6}
a € {0.005,0.01,0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.5)

Product-Parallel  (0.02,5,3,3)  0.13 2 SEUSG 7.8} 334.06
v € {3,4,5,6}
a € {0.0025,0.005,0.0075,0.01,0.015,0.02, 0.025, 0.03, 0.04, 0.05, 0.1, 0.2}

MAPK (002,7,3,10) 301285 33104 518,510} 77179.92
v € {7,8,9,10)
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