Efficient synthesis of logic programs through problem decomposition

Céline Hocquette University of Oxford / Southampton

There must be a red piece in contact with a square piece

Color in green pixels in between two blue pixels

Color in green pixels in between two blue pixels

a form of program synthesis based on logic

Examples (positive or negative)

Examples (positive or negative)

Background Knowledge

Positive examples	Negative examples
zendo(ex1).	zendo(ex3).
zendo(ex2).	zendo(ex4).

ex4

Background Knowledge

piece(ex1, p1). piece(ex1, p2). piece(ex1, p3). piece(ex1, p4). blue(p1). triangle(p1). size(p1, 2). small(2). red(p2). circle(p2). triangle(p4). contact(p2, p3). on(p2, p3). right(p4, p3). left(p1, p2).

•••

Program

zendo(Structure) ←
 piece(Structure,Piece1),
 red(Piece1),
 contact(Piece1,Piece2),
 square(Piece2).

• high generalisation ability

 $out(X,Y,Color) \leftarrow in(X,Y,Color).$

- high generalisation ability
- learn from small amount of data

- high generalisation ability
- learn from small amount of data
- learn from highly relational data

- high generalisation ability
- learn from small amount of data
- learn from highly relational data
- learn explainable programs

- high generalisation ability
- learn from small amount of data
- learn from highly relational data
- learn explainable programs
- reason about programs

Main challenge

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

hypothesis space = the set of all programs which may be learned by the learner

Large hypothesis spaces!

Zendo: 10⁸ hypotheses with 1 rule and at most 6 variables and at most 6 literals

In this presentation: problem decomposition

- 1. Combining rules to learn programs with many rules
- 2. Joining rules to learn programs with big rules
- 3. Example decomposition

1 - Combining rules to learn programs with many rules

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

Learning logic programs by combing programs, Andrew Cropper and Céline Hocquette, ECAI, 2023

1 - Combining rules to learn programs with many rules

r₁: win(Board,Player) ← cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)
r₂: win(Board,Player) ← cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)
r₃: win(Board,Player) ← cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)
r₄: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)
r₄: win(Board,Player) ← cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)

Learn small programs that entail some of the positive examples

Reason about the coverage of programs to find a combination of programs that entails many positive examples

Our approach

Our approach

solved using a constraint optimisation approach

Input:

Program	Positive examples covered	Size
p1	{e1,e2,e3}	3
p2	{e9}	3
р3	{e1,e3,e5,e6,e7}	4
p4	{e2,e6,e7}	4
p5	{e2,e5,e8,e9}	5
p6	{e8,e9}	6

Combine stage

Input:

Program	Positive examples covered	Size
р1	{e1,e2,e3}	3
p2	{e9}	3
р3	{e1,e3,e5,e6,e7}	4
p4	{e2,e6,e7}	4
р5	{e2,e5,e8,e9}	5
p6	{e8,e9}	6

Output: {p1,p3,p5} covers {e1,e2,e3,e5,e6,e7,e8,e9} and has size 12

Our approach

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)</pre>

win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)</pre>

win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)</pre>

win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

win(Board,Player) < cell(Board,X,0,Player),cell(Board,X,1,Player),cell(Board,X,2,Player)</pre>

win(Board,Player) < cell(Board,0,Y,Player),cell(Board,1,Y,Player),cell(Board,2,Y,Player)</pre>

win(Board,Player) < cell(Board,0,0,Player),cell(Board,1,1,Player),cell(Board,2,2,Player)</pre>

win(Board,Player) < cell(Board,2,0,Player),cell(Board,1,1,Player),cell(Board,0,2,Player)</pre>

Separable program

line(Board,0,Player) ← cell(Board,0,Player)
line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

line(Board,Cell,Player) ← cell(Board,Cell,Player), above(Cell,Cell1), line(Board,Cell1,Player)

line(Board,0,Player) ← cell(Board,0,Player)

Non-separable program

How well does it work?

md 13 ± 1 3357 ± 19 buttons 23 ± 3 timeoutrps 87 ± 15 timeoutcoins 490 ± 35 timeoutbuttons-g 3 ± 0 timeout
buttons 23 ± 3 timeoutrps 87 ± 15 timeoutcoins 490 ± 35 timeoutbuttons-g 3 ± 0 timeout
rps 87 ± 15 timeoutcoins 490 ± 35 timeoutbuttons-g 3 ± 0 timeout
coins 490 ± 35 timeoutbuttons-g 3 ± 0 timeoutcoins r 105 0
buttons-g 3 ± 0 timeout
105 . 0 timeseut
coins-g 105 ± 6 timeout
attrition 26 ± 1 timeout
<i>centipede</i> 9 ± 0 1102 ± 13

Learning times (s) with a timeout of 60 minutes

Task	With combine	Without combine
md	100 ± 0	37 ± 13
buttons	100 ± 0	19 ± 0
rps	100 ± 0	18 ± 0
coins	100 ± 0	17 ± 0
buttons-g	100 ± 0	50 ± 0
coins-g	100 ± 0	50 ± 0
attrition	98 ± 0	2 ± 0
centipede	100 ± 0	100 ± 0

Predictive accuracies (%)

Why does it work?

• We decompose a learning task into smaller tasks that can be solved separately

Why does it work?

- We decompose a learning task into smaller tasks that can be solved separately
- Searching over non-separable programs only can vastly reduce the hypothesis space.

m rules in the hypothesis space, at most k rules in a program

separable	non-separable
m ^k	m

2 - Joining rules to learn programs with big rules

zendo(Structure) ←

piece(Structure,Piece1),blue(Piece1),

piece(Structure,Piece2),red(Piece2),

piece(Structure,Piece3),yellow(Piece3).

Learning big logical rules by joining small rules, Céline Hocquette, Andreas Niskanen, Rolf Morel, Matti Järvisalo, and Andrew Cropper, IJCAI, 2024.

Learn small rules that entail some positive and some negative examples

Learn small rules that entail some positive and some negative examples

Reason about the coverage of programs to find conjunctions that entail some positive examples and no negative examples

zendo(Structure) < zendo1(Structure), zendo2(Structure), zendo3(Structure).</pre>

Our approach

Input:

Program	Positive examples covered	Negative examples covered	Size
p1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
p5	{e1,e2}	{n1,n2}	5

Input:

Program	Positive examples covered	Negative examples covered	Size
p1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
р5	{e1,e2}	{n2,n3}	5

Output: c1={p3,p4,p5} covers {e1,e2} and has size 13

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
р5	{e1,e2}	{n1,n2}	5

Output: c1={p3,p4,p5} covers {e1,e2} and has size 13 c2={p1,p3} covers {e1} and has size 5

Input:

Program	Positive examples covered	Negative examples covered	Size
р1	{e1}	{n3}	2
p2	{e2}	{n3}	2
р3	{e1,e2}	{n1,n2}	3
p4	{e1,e2}	{n1,n3}	5
р5	{e1,e2}	{n1,n2}	5

Output:

c1={p3,p4,p5} covers {e1,e2} and has size 13 c2={p1,p3} covers {e1} and has size 5 c3={p2,p3} covers {e2} and has size 5

solved using a constraint satisfaction approach

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

Splittable program

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

piece(Structure,Piece2), square(Piece2), left(Piece2,Piece3), red(Piece3)

left(Piece1,Piece2)

Non-splittable program

How well does it work?

Predictive accuracies (%)

Why does it work?

- We decompose a learning task into smaller tasks that can be solved separately
- Searching over non-splittable programs only can vastly reduce the hypothesis space.

Insert the letter a at position 2

Input	Output
[l, i, o, n]	[l, a, i, o, n]
[t, i, g, e, r]	[t, a, i, g, e, r]

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

Insert the letter a at position 2

Input	Output
[l, i, o, n]	[l, a, i, o, n]
[t, i, g, e, r]	[t, a, i, g, e, r]

def f(xs):
 return cons(head(xs),cons('a',tail(xs))

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

Insert the letter a at position 3

Input	Output
[l, i, o, n]	[l, i, a, o, n]
[t, i, g, e, r]	[t, i, a, g, e, r]

def f(xs):

return cons(head(xs),cons(head(tail(xs)),cons('a',tail(tail(xs)))))

Insert the letter a at position 2

Input	Output
[l, i, o, n]	[l, a, i, o, n]
[t, i, g, e, r]	[t, a, i, g, e, r]

Insert the letter a at position 2

Input	Output
[l, i, o, n]	[l, a, i, o, n]
[t, i, g, e, r]	[t, a, i, g, e, r]

out(I,V) ← I<2, in(I,V).
out(2,a).
out(I,V) ← I>2, in(I-1,V).

Insert the letter a at position 3

Input	Output
[l, i, o, n]	[l, i, a, o, n]
[t, i, g, e, r]	[t, i, a, g, e, r]

Insert the letter a at position 3

Input	Output
[l, i, o, n]	[l, i, a, o, n]
[t, i, g, e, r]	[t, i, a, g, e, r]

out(I,V) ← I<3, in(I,V).
out(3,a).
out(I,V) ← I>3, in(I-1,V).

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

out(X,Y,C) ← in(X,Y,C). out(X,Y,yellow) ← empty(X,Y), height(X). out(X,Y,red) ← empty(X,Y), height(X+Y-1).

Relational decomposition for program synthesis, Céline Hocquette, and Andrew Cropper, under review at AAAI.

 $out(X,Y,C) \leftarrow in(X,Y,C).$ $out(X,Y,red) \leftarrow empty(X,Y), in(X1,Y,C), in(X,Y1,C).$

How well does it work?

Why does it work?

• Decomposes a synthesis task into smaller ones by decomposing each training example into multiple examples

Why does it work?

- Decomposes a synthesis task into smaller ones by decomposing each training example into multiple examples
- Learn relations between elements / pixels

• More core primitives (we used only basic arithmetic relations).

• Better search
Conclusion

Decomposing a synthesis task into smaller ones can improve learning performance

Interested?

Open-source ILP system Popper

https://github.com/logic-and-learning-lab/Popper

Thank you! Questions?

celinehocquette@gmail.com