Verification and synthesis of dynamic systems with locks and variables

Corto Mascle joint work with Anca Muscholl, Igor Walukiewicz

LaBRI, Bordeaux

Verification and synthesis of dynamic systems with locks and variables

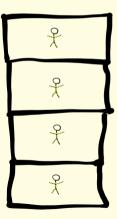
Corto Mascle joint work with Anca Muscholl, Igor Walukiewicz

LaBRI, Bordeaux

Synthesis Days

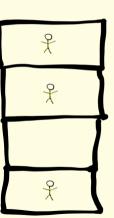
The prisoners and the lightbulb

▶ 4 prisoners are waiting in their cells



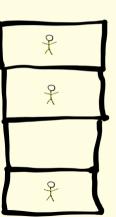
The prisoners and the lightbulb

- ▶ 4 prisoners are waiting in their cells
- Everyday, one is picked at random and taken to a room with a lightbulb and a switch, then brought back to the cell.



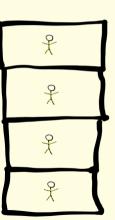
The prisoners and the lightbulb

- ▶ 4 prisoners are waiting in their cells
- Everyday, one is picked at random and taken to a room with a lightbulb and a switch, then brought back to the cell.



The prisoners and the lightbulb

- ▶ 4 prisoners are waiting in their cells
- Everyday, one is picked at random and taken to a room with a lightbulb and a switch, then brought back to the cell.



The prisoners and the lightbulb

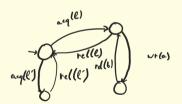
- ▶ 4 prisoners are waiting in their cells
- Everyday, one is picked at random and taken to a room with a lightbulb and a switch, then brought back to the cell.
- At any point a prisoner can claim that all prisoners have been in the cell at least once.

They win if it is true, otherwise they lose.

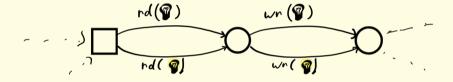
We have:

- ► A finite set of processes
- ► A finite set of variables
- ► A finite set of locks

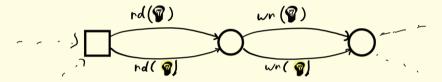
Each process is a finite-state transition system with operations



Processes have controllable \bigcirc and uncontrollable $\boxed{\ }$ states.

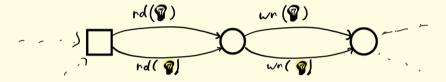


Processes have controllable \(\) and uncontrollable \(\) states.



A **strategy** σ_p for process p is a function choosing the next action of p from controllable states with as input the local run seen so far.

Processes have controllable \(\) and uncontrollable \(\) states.



A **strategy** σ_p for process p is a function choosing the next action of p from controllable states with as input the local run seen so far.

Specifications = boolean combinations of local regular conditions.

- ▶ Processes have controllable and uncontrollable states
- ▶ Strategies are local, ie, only use the sequence of local actions of the process as input.

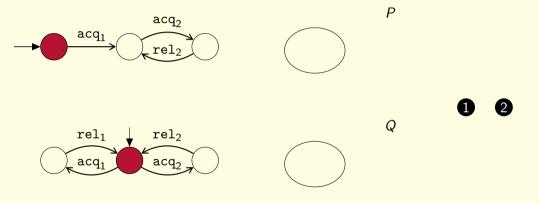
- ▶ Processes have controllable and uncontrollable states
- ▶ Strategies are local, ie, only use the sequence of local actions of the process as input.

Problem

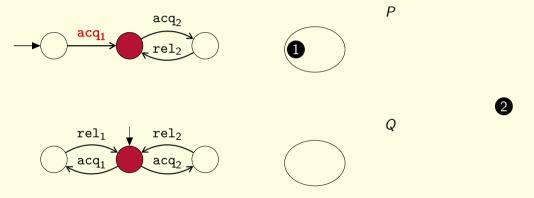
Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Verification

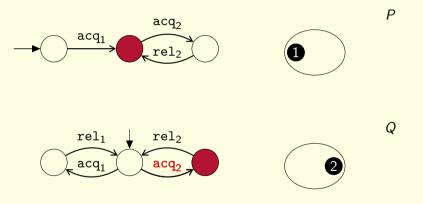
Part I



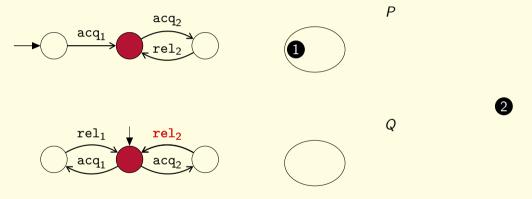
¹Kahlon, Ivancic, Gupta CAV 2005



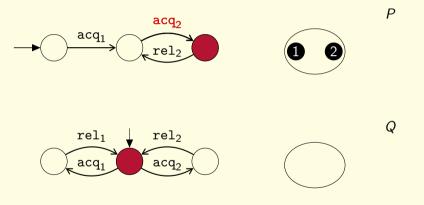
¹Kahlon, Ivancic, Gupta CAV 2005



¹Kahlon, Ivancic, Gupta CAV 2005

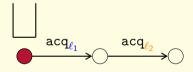


¹Kahlon, Ivancic, Gupta CAV 2005

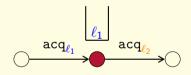


¹Kahlon, Ivancic, Gupta CAV 2005

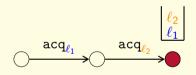
All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.



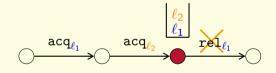
All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.



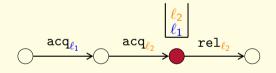
All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.



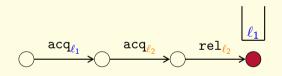
All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.



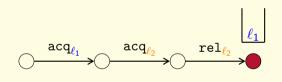
All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.

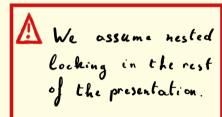


All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.



All processes acquire and release locks in a **stack-like order**, i.e., a process can only release the lock it acquired the latest.





Dynamic LSS

 \triangleright We want to allow an unbounded number of processes and locks.

Dynamic LSS

> We want to allow an unbounded number of processes and locks.

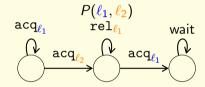
▷ A process can spawn other processes

Dynamic LSS

- ▶ We want to allow an unbounded number of processes and locks.
- ▷ A process can spawn other processes
- \triangleright A process takes parameters, represented by lock variables

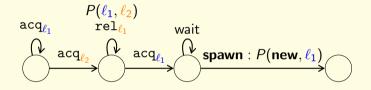
$$Proc = \{P(\ell_1, \ell_2), Q(\ell_1, \ell_2, \ell_3), R(), ...\}$$

Locks :



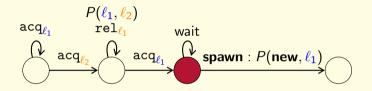
 $^{^2}$ Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter's thesis 2022

Locks :

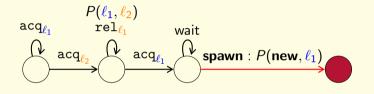


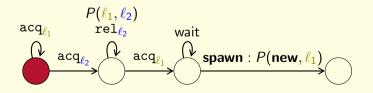
 $^{^2}$ Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter's thesis 2022

Locks :



 $^{^2}$ Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter's thesis 2022

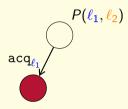




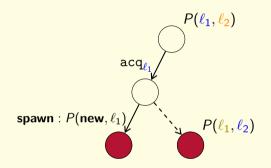
²Bouajjani, Müller-Olm, Touili, CONCUR 2005 + Kenter's thesis 2022

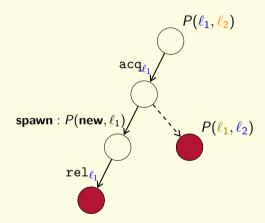
Tree representation

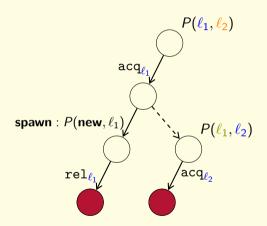
Tree representation



Tree representation

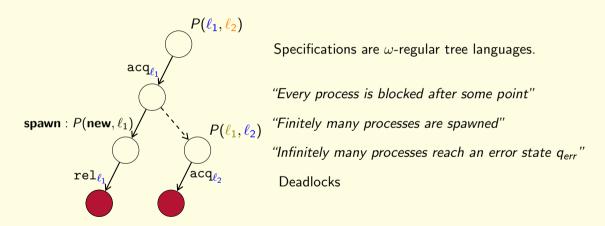








Specifications are ω -regular tree languages.



Regular model-checking problem

Input: A DLSS $\mathcal D$ and a parity tree automaton $\mathcal A.$

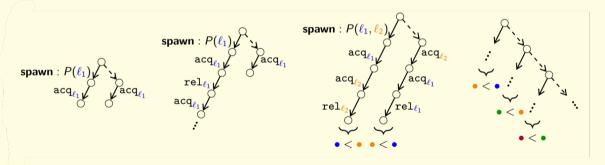
Output: Is there a run of \mathcal{D} accepted by \mathcal{A} ?

Regular model-checking problem

Input: A DLSS \mathcal{D} and a parity tree automaton \mathcal{A} .

Output: Is there a run of \mathcal{D} accepted by \mathcal{A} ?

Problem: characterise trees that represent actual executions.

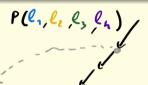


Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.



For each node we guess a label of the form

- "\ell_1 is taken and will never be released", "\ell_2 will be acquired infinitely many times"....
- e, Le,

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.

For each node we guess a label of the form

- "ℓ₁ is taken and will never be released", "ℓ₂ will be acquired infinitely many times", ...
- ► l₁< l₃ ∠ l₄

The automaton checks that:

- the labels are consistent
- There exists a well-founded linear ordering on locks in which all local orders embed.
 (Technical part, also see related work [Demri Quaas, Concur '23])

Theorem [M., Muscholl, Walukiewicz Concur 2023]

Regular model-checking of DLSS is EXPTIME-complete, and PTIME for fixed number of locks per process and parity index.

Theorem [M., Muscholl, Walukiewicz Concur 2023]

Regular model-checking of DLSS is EXPTIME-complete, and PTIME for fixed number of locks per process and parity index.

What about pushdown processes?

Right-resetting pushdown tree automata

 ${f Right\text{-resetting}}={f the}$ stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the parity index is fixed.

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

Lemma

Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the parity index is fixed.

Theorem

Regular model-checking of nested **pushdown** DLSS is EXPTIME-complete, and PTIME when the parity index and the number of locks per process are fixed.

Right-resetting pushdown tree automata

Right-resetting = the stack is emptied every time we go to a right child.

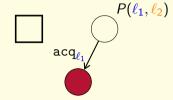
Lemma

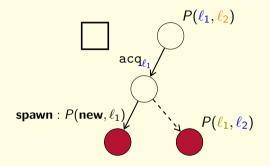
Emptiness is decidable in PTIME for right-resetting parity pushdown tree automata when the parity index is fixed.

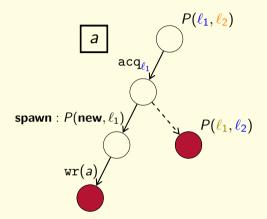
Theorem

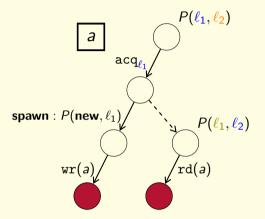
Regular model-checking of nested **pushdown** DLSS is EXPTIME-complete, and PTIME when the parity index and the number of locks per process are fixed.

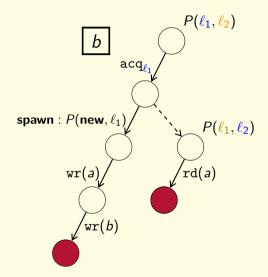
What about shared variables?

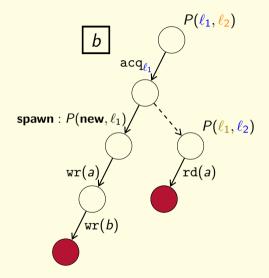






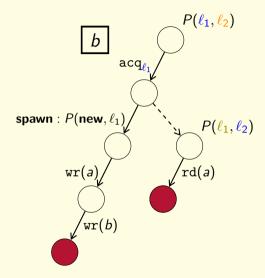






We add a register and operations wr and rd writing and reading letters from a finite alphabet in the register.

Sets of runs are no longer regular.



We add a register and operations wr and rd writing and reading letters from a finite alphabet in the register.

Sets of runs are no longer regular.

Theorem

State reachability is undecidable for DLSS with variables.

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

³Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

³Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014

Bounded writer reversals

Writer reversal = the process writing in the shared register changes.

Theorem

State reachability is decidable for DLSSV with bounded writer reversals.

It is undecidable when the processes are pushdown systems³.

³Atig, Bouajjani, Kumar, Saivasan FSTTCS 2014

Consider a run with one process writing and others reading.

Consider a run with one process writing and others reading.

Phase: run section where

- the writer is in the same state and has the same locks at the start and at the end,
- none of the locks used by the writers in the phase are held by another process at the start or the end

Consider a run with one process writing and others reading.

Phase: run section where

- ▶ the writer is in the same state and has the same locks at the start and at the end,
- none of the locks used by the writers in the phase are held by another process at the start or the end

Lemma

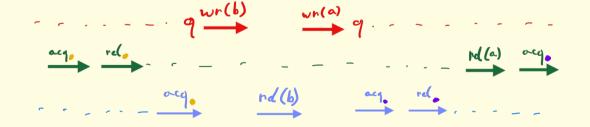
Every finite run with a single writer can be cut into $2^{O(|Q|)}$ phases.

Consider one phase.

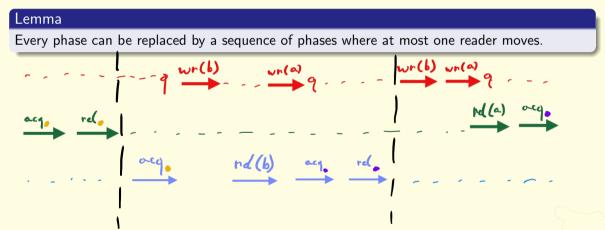
Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.



Consider one phase.



Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

- ▶ guesses a partition of the tree in $K2^{O(|Q|)}$ phases, each with a single writer.
- checks lock conditions
- checks compatibility of each reader with the writer

Consider one phase.

Lemma

Every phase can be replaced by a sequence of phases where at most one reader moves.

Construct A that:

- guesses a partition of the tree in $K2^{O(|Q|)}$ phases, each with a single writer.
- checks lock conditions
- checks compatibility of each reader with the writer

To sum up

	State reach	w-regular
Nested Lss		
Nested Dynamic LSS		
Nested DLSS + Voir with bounded writer switches		?
Nested DLSS +var	X	X

PART II Controller synthesis

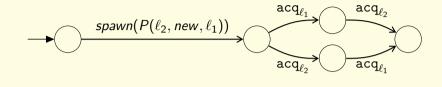
- ▶ Processes have controllable and uncontrollable states
- ▶ Strategies are local, ie, only use the sequence of local actions of the process as input.
- Every copy of each process uses the same strategy

Problem

Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Example

$$P_{init}(\ell_1,\ell_2)$$
 :



$$P(\ell_1,\ell_2,\ell_3): \\ \hline \hspace{2cm} spawn(P(\ell_2,new,\ell_3)) \\ \hline \hspace{2cm} acq_{\ell_1} \\ \hline \hspace{2cm} acq_{\ell_2} \\ \hline \hspace{2cm} acq_{\ell_1} \\ \hline \hspace{2cm} acq_{\ell_1} \\ \hline \end{array}$$

$$Q(\ell_1,\ell_2)$$
 : $\operatorname{acq}_{\ell_2}$ $\operatorname{acq}_{\ell_2}$

Problem

Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Problem

Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.

Problem

Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.

Corollary

There is a tree automaton $\mathcal T$ recognising executions of $\mathcal D$ that are accepted by $\mathcal A$.

Problem

Is there a strategy $\sigma = (\sigma_p)_{p \in Proc}$ ensuring that there is no execution accepted by \mathcal{A} ?

Lemma

The set of execution trees of a DLSS is recognised by a Büchi tree automaton of exponential size.

Corollary

There is a tree automaton $\mathcal T$ recognising executions of $\mathcal D$ that are accepted by $\mathcal A$.

Strategy $(\sigma_p)_{p \in Proc} \to \text{set of local runs}$

Is there a strategy such that we cannot form a tree accepted by $\mathcal T$ whose left branches are those local runs?

We define *types* of local runs (= left branches).

The behaviour of a strategy $\sigma = (\sigma_p)_{p \in Proc}$ is the set of types of left branches compatible with it.

Lemma

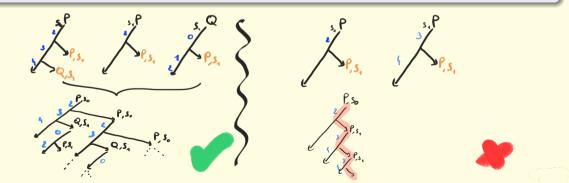
Whether $(\sigma_p)_{p \in Proc}$ is winning only depends on its behaviour.

We define *types* of local runs (= left branches).

The behaviour of a strategy $\sigma = (\sigma_p)_{p \in Proc}$ is the set of types of left branches compatible with it.

Lemma

Whether $(\sigma_p)_{p \in Proc}$ is winning only depends on its behaviour.



Theorem

The controller synthesis problem is decidable over DLSS.

Theorem

The controller synthesis problem is decidable over DLSS.

Algorithm:

- ► Enumerate sets of profiles
- ► For each one, test whether there is a strategy yielding that set of profiles
- ▶ If there is one, there is one with bounded memory: check whether it is winning.

With locks and variables

With variables, none of this works!

- ► Sets of execution trees are not regular
- "Pumping argument" used for verification does not extend to adversarial setting.

Oh No!

What is left to do

Conjecture

Verification of nested DLSS with variables and bounded writer reversals against ω -regular tree specifications is decidable.

What is left to do

Conjecture

Verification of nested DLSS with variables and bounded writer reversals against ω -regular tree specifications is decidable.

Conjecture

Controller synthesis of nested DLSS with variables and bounded writer reversals against ω -regular tree specifications is decidable.

Formal problem

Problem

Given a system with processes, locks and variables and a specification φ , can we find a family of strategies $(\sigma_p)_{p \in \text{Proc}}$ guaranteeing φ ?

Problem 1

I: A system \mathcal{S} , $K \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in Proc}$ guaranteeing φ over runs with $\leq K$ writer reversals?

Problem 2

I: A system S, $K \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in Proc}$ guaranteeing φ and that all runs have $\leq K$ writer reversals?

Problem 1

I: A system \mathcal{S} , $\mathcal{K} \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in \mathtt{Proc}}$ guaranteeing φ over runs with $\leq K$ writer reversals?

Problem 2

I: A system \mathcal{S} , $K \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in Proc}$ guaranteeing φ and that all runs have $\leq K$ writer reversals?

Algorithm:

For
$$K=0$$
 to $+\infty$ do

If $\exists (\sigma_p)$ such that $\phi \land \leq K \longrightarrow \text{return YES}$

If $\not\exists (\sigma_p)$ such that $\leq K \Rightarrow \phi \rightarrow \text{return NO}$

Problem 1

I: A system $S, K \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in \text{Proc}}$ guaranteeing φ over runs with $\leq K$ writer reversals?

Problem 2

I: A system $S, K \in \mathbb{N}$ and a specification φ

O:Is there a family of strategies $(\sigma_p)_{p \in Proc}$ guaranteeing φ and that all runs have $\leq K$ writer reversals?

Algorithm:

For
$$K = 0$$
 to $+\infty$ do

If $\exists (\sigma_p)$ such that $\phi \land \leq K \longrightarrow \text{return YES}$

If
$$\not\exists (\sigma_p)$$
 such that $\leq K \Rightarrow \phi \rightarrow \text{return NO}$

Other directions

- ► General approach to local controller synthesis
- ► Parameterised complexity
- Strategies using more information

Other directions

- ► General approach to local controller synthesis
- ► Parameterised complexity
- Strategies using more information

Thanks!