Open-ended generation of diverse solvable coding problems with autotelic generative models

Pierre-Yves Oudeyer

Inria Flowers Lab Inria, Univ. Bordeaux, Ensta ParisTech

> http://www.pyoudeyer.com https://flowers.inria.fr Twitter: @pyoudeyer

Open-ended and autonomous development in individuals: curiosity and language

The child as an autotelic sense-making organism:

Exploring to make good predictive models of the world and control it!

Autotelic agents (IMGEP algorithmic framework)

Colas, Karch, Moulin-Frier, Oudeyer (2022) Autotelic agents with Intrinsically motivated goal-conditioned reinforcement learning: a short survey.

Curiosity-driven autotelic robots

Forestier, Portelas, Mollard, Oudeyer (2022) Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning, JMLR https://www.jmlr.org/papers/volume23/21-0808/21-0808.pdf https://www.joutube.com/watch?v=NOLAwD4ZTW0

Curiosity-driven autotelic robots

Forestier, Portelas, Mollard, Oudeyer (2022) Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning, JMLR https://www.jmlr.org/papers/volume23/21-0808/21-0808.pdf https://www.youtube.com/watch?v=NOLAwD4ZTW0

CHEMISTRY

A curious formulation robot enables the discovery of a novel protocell behavior

Jonathan Grizou, Laurie J. Points, Abhishek Sharma, Leroy Cronin*

https://www.science.org/doi/pdf/10.1126/sciadv.aay4237

Automatized robot experiments

- 8 experiments running in parallel
- Specialized and stationary working stations
- Oils and surfactant handled separately

Limit: hand defined single goal space

Generating a Diversity of Challenging Programming Puzzles with Autotelic Generative Models

Julien Pourcel, Inria **Cédric Colas** MIT, Inria Gaia Molinaro University of California, Berkeley

Pierre-Yves Oudeyer Inria Laetitia Teodorescu Inria

Python Programming Puzzles (P3)

```
ÞΞ
\triangleright ~
           def f(x: float, a=1020) -> bool:
        1
                """Find a number that when squared is close to a."""
        2
        3
               return abs(x ** 2 - a) < 10 ** -3
        4
        5
           def g(a=1020) -> float:
        6
               return a ** 0.5
        7
        8
           assert f(g()) == True
        9
       10
       11 f(g())
[14]
      ✓ 0.2s
     True
- - -
```

Problem to solve and test function (test units) return True/False True: correct solution, False: incorrect solution

Python Programming Puzzles (P3)

```
ÞΞ
\triangleright \sim
           def f(x: float, a=1020) -> bool:
                """Find a number that when squared is close to a."""
         2
         3
                return abs(x ** 2 - a) < 10 ** -3
        4
         5
           def g(a=1020) -> float:
        6
                return a ** 0.5
         7
        8
           assert f(g()) == True
         9
       10
       11 f(g())
[14]
      ✓ 0.2s
     True
 - - -
```

Problem to solve and test function (test units) return True/False True: correct solution, False: incorrect solution

Solution function return a solution

Python Programming Puzzles (P3)

ÞΞ \triangleright \sim def f(x: float, a=1020) -> bool: """Find a number that when squared is close to a.""" 2 3 return abs(x ** 2 - a) < 10 ** -3 4 5 def g(a=1020) -> float: 6 return a ** 0.5 7 8 assert f(g()) == True 9 10 f(g()) 11 [14] ✓ 0.2s True - - -

Problem to solve and test function (test units) return True/False True: correct solution, False: incorrect solution

Solution function return a solution Check syntax of the puzzle and **correctness**

```
1 from walk_creator import walker_creator
<sup>3</sup> def make_square(wc, x0, y0, x1, y1):
      """ Make a square with top left x0,y0 and top right x1,y1 """
      j0 = wc.add_joint(x0, y0)
      j1 = wc.add_joint(x0, y1)
      j2 = wc.add_joint(x1, y1)
      j3 = wc.add_joint(x1, y0)
      return j0, j1, j2, j3
10
11
12
13 def make_walker():
      wc = walker_creator()
15
      # the main body is a square
16
      sides = make_square(wc, 0, 0, 10, 10)
17
      center = wc.add_joint(5, 5)
18
19
      # connect the square with distance muscles
20
      for k in range(len(sides)-1):
21
          wc.add_muscle(sides[k], sides[k+1])
22
      wc.add_muscle(sides[3], sides[0])
23
24
      # one prong of the square is a distance muscle
25
      wc.add_muscle(sides[3], center)
26
27
      # the other prongs from the center of the square are active
28
      wc.add_muscle(sides[0], center, False, 5.0, 0.0)
20
      wc.add muscle(sides[1], center, False, 10.0, 0.0)
30
      wc.add_muscle(sides[2], center, False, 2.0, 0.0)
31
32
      return wc.get_walker()
33
```


Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., & Stanley, K. O. (2023). Evolution through large models. In *Handbook of Evolutionary Machine Learning* (pp. 331-366). Singapore: Springer Nature Singapore.

Map elite dimension -> number of features

Robot Width

What descriptor can we use for P3 ? What quality measure can we use for P3 ?

What descriptor can we use for P3 ? What quality measure can we use for P3 ?

How to maximize diversity given limited resources?

What descriptor can we use for P3 ? Semantic descriptors (recursion, set operations, ...) What quality measure can we use for P3 ? Difficulty as measured by an external LLM solver

How to maximize diversity given limited resources?

What descriptor can we use for P3 ? Semantic descriptors (recursion, set operations, ...) What quality measure can we use for P3 ? Difficulty as measured by an external LLM solver

How to maximize diversity given limited resources? Targeting new goals

Our proposed approach

Our proposed approach

Our proposed approach

Quality-Diversity metrics

(higher is better)

Quality-Diversity metrics

(higher is better)

Automatic benchmark generator

Greedy pass@1 scores for various models on multiple datasets

Automatic benchmark generator

correlation between pass@1 scores across all datasets, averaged over LLMs

Automatic benchmark generator

correlation between pass@1 scores across all datasets, averaged over LLMs

Conclusion

- We proposed a new algorithm to generate a diverse set of difficult puzzle
- Archive generated by our method seems to be the most diverse (given our diversity metrics)
- ACES seems promising as an Automatic benchmark generator (high correlation with latest human made dataset)

LLM-based Autotelic Agents in text worlds

Zork I: The Great Underground Empire						
Behind House		Score: 0	Moves: 3			
South of House You are facing t the windows are l	he south side of a wh boarded.	ite house. There is no	door here, and all			
>go_east						
Behind House You are behind th one corner of the	he white house. A pat e house there is a sm	ch leads into the fores nall window which is sl	t to the east. In ightly ajar.			
≻open window With great effor	t, you open the windo	w far enough to allow	entry.			
>enter house Kitchen You are in the k recently for the	itchen of the white h preparation of food.	nouse. A table seems to A passage leads to th	have been used e west and a dark			
is a small window On the table is a A bottle is sitt:	w which is open. an elongated brown sa ing on the table.	ack, smelling of hot pe	ppers.			
A quantity of a	contains: water					
>						
			Do it			
$\underline{u = up arrow}$	$\underline{d} = down arrow$	l = left arrow	$\underline{\mathbf{r} = right arrow}$			
Restart Game		Return to Elevator	Return to Lobby			

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

AUGMENTING AUTOTELIC AGENTS WITH LARGE LANGUAGE MODELS

Laetitia Teodorescu,¹ Pierre-Yves Oudever, Xingdi Yuan & Marc-Alexandre Côté Cédric Colas,¹ MIT, Inria Microsoft Research Inria

\subset	Goal: prepare cilantro dish Instructions: open fridge;	Step 6: roast pork chop Step 6: you roast the pork chop.	E C	Enjoy delicious meal (Step 8) Open fridge and then close it		Open fridge and then close yes (st	se it: ep 2)	
	pick up cilantro; pick up knife; cut cilantro; cook cilantro	Step 0. you roast the pork chop. Step 7: prepare meal		(Step 2) Eat healthy (Step 8)	F	yes (sto Eat healthly: yes (sto Clean kitcher	ep 2) ep 8)	
	pick up cilantro; pick up knife; cut cilantro; cook cilantro	Step 6: you roast the pork chop. Step 7: prepare meal		(Step 2) Eat healthy (Step 8)	F	yes (sto Eat healthly: yes (sto	ep 2) ep 8)	
	Goal: prepare cilantro dish Instructions: open fridge;	Step 6: roast pork chop Step 6: you roast the pork chop.	E C	Dpen fridge and then close it		Open fridge and then clos	se it: ep 2)	
	Answer: Goal: prepare cilantro dish	Step 5: you chop the cilantro.	Е	Open fridge (Step 0) Enjoy delicious meal (Step 8)		Ans Enjoy delicious meal: yes (ste	swer: ep 8)	
with	instructions.	Step 5: chop cilantro		Answer:		healthy", "clean kitc	hen"	
First describe the new goal starting with an imperative verb; then list the		Step 4: you pick up the pork chop.	each goa	each goal, specify when it is achieved for the first time.		dish", "open fridge", "enjoy delicio meal", "open fridge and close it", "		
	<previous 2="" goal=""> </previous>	Step 3: you pick up the knife. Database of the description of a video game, list the most interesting, impressive, novel or creative goals he achieved and, for		Here	e is the list: "prepare cilan	antro		
	<pre>constructions.</pre>			behavior in a video game, list		for the first time.		
Exercise: find a sequence of 2, 3, or 4 instructions that will help me achieve a new, interesting or creative goal in this game.		Step 2: you close the fridge.	Step 8: you cat the meal.		or	or creative goals he achieved and, for each goal, specify when it is achieved		
		Step 1: you pick up the channel. Step 2: close fridge			pl th	player's behavior in a video game, list the most interesting, impressive, novel		
		Step 1: you pick up the cilantro.			Exercise: Given the description of a			
what you did previously: <trajectory></trajectory>		Step 0: you open the fridge.	Step 7: you prepare the meal		SI	tep 8: you eat the meal.		
104	are playing a video game, here is	Step 0: open fridge	Step 6: y	ou roast the pork chop.		Step 8: eat	meal	

TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning © 55 ☆ 1k ¥ 169

0

AL 26

ŵ

Augmenting Autotelic Agents with LLMs

Figure 2: General architecture of LMA3. LMA3 assumes access to a model of cultural transmission implemented via ChatGPT (dashed line). As shown in the goal representations block, LMA3 leverages that model to generate goals g (left), relabel past trajectories $\tau = (s_0, a_0, ..., s_T, a_T)$ as τ_g^* (middle) and compute rewards when goals are reached (right). s_t and a_t denote the state representation and the action taken at game step t. The goal-conditioned policy (top) attempts to reach its goal within *CookingWorld* (right) and uses relabels and rewards for learning.

Step 0: open fridge

Colas, Teodorescu, Côté, Yuan and Oudeyer, in review

Discovery of more complex goals.