Single and multi agent reinforcement learning algorithms to synthetize agents behaviour: Examples in life science Workshop Program synthesis, Bordeaux, 2024

Regis Sabbadin (Inrae-MIAT, Toulouse) with ´ Prasanna Maddila, Patrick Taillandier, Meritxell Vinyals Eric Casellas and Patrick Chabrier (Inrae-MIAT, Toulouse) Orlane Rossini (IMAG, Montpellier and Inrae-MIAT, Toulouse) Alice Cleynen and Benoîte de Saporta (IMAG, Montpellier)

Work supported by PRC project Project-ANR-21-CE40-0005 HSMM-INCA and by PRCI ANR-DFG Project-ANR-22-CE92-0011 CHIP-GT

INRAQ

November, 27, 2024 [RL for complex sequential decision problems](#page-45-0) November, 27, 2024 / Régis Sabbadin

Principles of Reinforcement Learning

What is reinforcement Learning?

Definition (Wikipedia)

Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent ought to take actions in a dynamic environment in order to maximize the cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.

RL is based on the Markov Decision Process (MDP) framework, which allows to represent sequential decision problems under uncertainty.

Markov Decision Processes

A MDP is defined as a tuple $\langle S, \mathcal{D}, P, r/c \rangle$, where:

- \triangleright S is a (generally finite) set of states of the controlled system.
- \triangleright $\mathcal D$ is a (generally finite) set of decisions.
- \triangleright *P* is a transition function. *P*(*s'*|s, *d*) is the probability that the system, initially in state $\bm{s} \in \mathcal{S}$ transitions to state $\bm{s}' \in \mathcal{S}$ when decision $\bm{d} \in \mathcal{D}$ is applied.
- ▶ *r* (resp. *c*) is a reward (resp. cost) function associated to transitions. $r(s, d, s')$ is the reward obtained when a transition (s, d, s') occurs.

Solving a MDP amounts to finding a policy $\pi : \mathcal{S} \times \{0, \ldots, H-1\} \to \mathcal{D}$, optimizing the expected sum of rewards/costs obtained during a finite number of steps¹, H.

$$
V^{\pi}(s)=\mathbb{E}^{\pi}\left[\sum_{t=0}^{H-1}r(S_{t},\pi^{t}\left(S_{t}\right),S_{t+1})|S_{o}=s,\pi\right]
$$

¹Classical other objective exist for infinite horizon: Average cost, discounted cost...

INRAZ

Solving Markov Decision Processes

In the finite state/decision spaces case, there exists an optimal policy π^* (such that $V^{\pi^*}(\mathsf{s}) \geq V^{\pi}(\mathsf{s}), \forall \pi, \forall \mathsf{s} \in \mathcal{S}$). Furthermore,

- ► π^* can be computed efficiently (i.e. in time polynomial in *H*, $|S|$, $|D|$), using, e.g. dynamic programming, or linear programming.
- \blacktriangleright However, when S, D are multidimensionnal or continuous, or when the problem is partially observed, or when the model is unknown and accessible only through simulation...
- ▶ **Dynamic Programming can no more be efficiently applied!**
- ▶ **(Deep) Reinforcement Learning approaches may be the solution...**

Reinforcement Learning in MDP (ex: infinite H. Q-learning)

computed from observed transitions \langle **s**, *d*, **s**^{\prime}, **c** \rangle

$$
\pi^{\star}(s) = \argmin_{d \in \mathcal{D}} Q^{\star}(s, d)
$$

$$
\langle s,d,s',c\rangle\Rightarrow Q^n(s,d)\leftarrow (1-\alpha)Q^{n-1}(s,d)+\alpha\left(c+\gamma\min_{d'}Q^{n-1}(s',d')\right)
$$

 (Q^n) converges to Q^* when $n \to +\infty$!

INRAZ

Deep Q-Network algorithm (infinite horizon)

- Uses a neural network to "learn" the Q-function from observed trajectories
- ▶ **Handles multidimensional continuous state spaces (finite decision space)** ▶ **Data Consuming !**

INRAZ

Some challenges in RL raised by applications

- **Partial observability: Innovation adoption in agriculture**
- ▶ **Non-Markovian process: Cancer treatment follow-up**
- ▶ **Multiple Learning Agents: Anti-poaching**

Challenge 1: partial observability Innovation Adoption in agriculture

Innovation adoption example²

Objective: Design of public policies aiming at increase the adoption rate of an innovation (communicating water meters in irrigated agriculture)

- ▶ Agent: Public Authority
- ▶ State: mental state of farmers and interaction network (complex state, unobserved)
- \blacktriangleright Reward: Increase of $\#$ adopters
- ▶ Decision: parameters of 3 levers. Environmental protection awareness, training, subsidies
- \triangleright Observation: $\#$ adopters, available budget, remaining time steps

 2 [Vinyals et al., 2023] Towards AI-designed innovation diffusion policies using agent based simulations and reinforcement learning: the case of digital tool adoption in agriculture [RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

Innovation adoption example²

Objective: Design of public policies aiming at increase the adoption rate of an innovation (communicating water meters in irrigated agriculture)

- \blacktriangleright The state is perceived only through partial observations
- \triangleright Complex transitions, simulated by the Gama simulator
- \blacktriangleright The mental reconstruction of the state depends on histories of past actions/observations
- ▶ States and actions are continuous / high-dimensional

▶ Fits the POMDP framework! 2 [Vinyals et al., 2023] Towards AI-designed innovation diffusion policies using agent based simulations and reinforcement learning: the case of digital tool adoption in agriculture **INRAZ** [RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

Partially Observable Markov Decision Process

INRAZ

Partially Observable Markov Decision Process

POMDP Definition

A POMDP is defined by a tuple $(S, \mathcal{D}, P, \Omega, Z, c)$.

- ▶ State of the process: $s \in S$;
- ▶ Decision: *d* ∈ D;
- ▶ Transition probability: $P(s'|s, d)$;
- Observation: $ω ∈ Ω$;
- ▶ Observation function: $Z(\omega|s, d, s')$;
- \triangleright Cost function: $c(s, d, s')$.

INRAZ

Partially Observable Markov Decision Process

POMDP Definition

A POMDP is defined by a tuple (S, D, *P*, Ω, *Z*, *c*).

- ▶ State of the process: $s \in S$;
- Decision: $d \in \mathcal{D}$:
- ▶ Transition probability: $P(s'|s, d)$;
- Observation: $ω ∈ Ω$;
- ▶ Observation function: $Z(\omega|s, d, s')$;
- \triangleright Cost function: $c(s, d, s')$.

INRAZ

Solving a Partially Observable Markov Decision Process \blacktriangleright

A POMDP can be seen as a MDP where "states" are replaced with histories or, equivalently, by belief states, computed from trajectories

Solving a Partially Observable Markov Decision Process

A POMDP can be seen as a MDP where "states" are replaced with histories or, equivalently, by belief states, computed from trajectories

 \blacktriangleright In a POMDP, we do not observe s_t , but noisy observations ω_t

- ▶ A *t*-step history $h_t = (\omega_0, d_0, \omega_1, d_1, \ldots, \omega_{t-1}) \in \mathcal{H}_t$ summarizes our probabilistic belief *b^t* about the state *s^t*
- ▶ In a finite-horizon POMDP, optimal policies are history dependent

Solving a Partially Observable Markov Decision Process

- \blacktriangleright In a POMDP, we do not observe s_t , but noisy observations ω_t
- A *t*-step history $h_t = (\omega_0, d_0, \omega_1, d_1, \ldots, \omega_{t-1}) \in \mathcal{H}_t$ summarizes our probabilistic belief *b^t* about the state *s^t*
- ▶ In a finite-horizon POMDP, optimal policies are history dependent

$$
\pi = \{\pi_t, \}_{t=0,\dots,H-1}, \text{ where } \pi_t : \mathcal{H}_t \to D_t
$$
\n
$$
\underbrace{V(\pi, S)}_{\text{Criterion to optimize}} = \underbrace{\mathbb{E}\left[\sum_{t=0}^{H-1} c(H_t, D_t, S_t) \mid S_0 = s, \pi, D_t \sim \pi_t(H_t)\right]}_{\text{Expected long-term cost following policy } \pi}
$$
\n
$$
\underbrace{V^*(S)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, S)}_{\text{Minimization over the set of policies } \Pi}.
$$

Solving a Partially Observable Markov Decision Process

- \blacktriangleright In a POMDP, we do not observe s_t , but noisy observations ω_t
- A *t*-step history $h_t = (\omega_0, d_0, \omega_1, d_1, \ldots, \omega_{t-1}) \in \mathcal{H}_t$ summarizes our probabilistic belief *b^t* about the state *s^t*
- ▶ In a finite-horizon POMDP, optimal policies are history dependent POMDP are far more difficult to solve than usual MDP!

Solution approaches \blacktriangleright

Solution approaches

Challenge 2: Non-Markovian process Cancer treatment follow-up (related to Orlane Rossini's PhD thesis)

Figure: Example of a patient's data*^a*

a IUCT Oncopole and CRCT, Toulouse, France

- \blacktriangleright Patients who have had a cancer benefit from regular follow-up;
- \blacktriangleright The concentration of clonal immunoglobulin is measured over time;
- \blacktriangleright The doctor must make new decisions at each visit.

Medical Context

Figure: Example of a patient's data*^a*

a IUCT Oncopole and CRCT, Toulouse, France

INRAZ

[RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

- ▶ Patients who have had a cancer benefit from regular follow-up;
- \blacktriangleright The concentration of clonal immunoglobulin is measured over time;
- \blacktriangleright The doctor must make new decisions at each visit.

=⇒ **Optimize decision-making to ensure the patient's quality of life**

A Piecewise-Deterministic Markov Process is defined through three local features

INRAZ

A Piecewise-Deterministic Markov Process is defined through three local features

The flow The deterministic part of the process $\phi_{m,k}^{\ell}(\zeta,t)$

INRAZ

A Piecewise-Deterministic Markov Process is defined through three local features

Jump intensity

Description of the jump mechanism of the process

▶ Boundary jump (deterministic)

$$
t_m^{\ell\star}(\zeta)=\inf\{t>0: \phi_{m,k}^{\ell}(\zeta,t)\in\{\zeta_0,D\}\}
$$

 \blacktriangleright Random (continuous time) jumps

$$
\mathbb{P}(T>t)=e^{-\int_0^t \lambda_m^{\ell}(\phi_{m,k}^{\ell}(\zeta,t))\,\mathrm{d}s}
$$

INRAZ

A Piecewise-Deterministic Markov Process is defined through three local features

INRAZ

Controlled Piecewise-Deterministic Markov Process Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

INRAZ

Controlled Piecewise-Deterministic Markov Process Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

Let the patient state be $x = (m, k, \zeta, u)$:

- ▶ *m* disease "mode";
- ▶ *k* number of relapses;
- \blacktriangleright ζ biomarker value;
- ▶ *u* time since last jump.

Controlled Piecewise-Deterministic Markov Process Example of cancer treatment follow-up

Random jump from a deterministic regime to the next

Let the patient state be $x = (m, k, \zeta, u)$:

- ▶ *m* disease "mode";
- ▶ *k* number of relapses;
- \blacktriangleright ζ biomarker value;
- ▶ *u* time since last jump.

Let *d* be the decision: $d = (\ell, r)$:

- ℓ treatment;
- ▶ *r* time till next visit.

INRAZ

Monte-Carlo planning solution approach³

Solving through history-based POMDP transformation

³de Saporta et al., Medical follow-up optimization: A Monte-Carlo planning strategy, 2024, <https://hal.science/hal-04382747v1> [RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

- Model-free algorithms require lots of data or a simulator
- Model-based algorithms require less data (but prior knowledge of model structure)⁵

⁴Orlane Rossini's PhD thesis

⁵Codes available at https://forgemia.inra.fr/orlane.le-quellennec/controlled_pdmp_po

Challenge 3: Multiple learning agents Anti-poaching (Prasanna Maddila's PhD thesis)

- We want to solve a subclass of stochastic games, where
	- \blacktriangleright Some agents are cooperative, ...
	- \blacktriangleright and the others independently compete with the team.
- \triangleright We can formally model Anti-Poaching in this sub-class
	- \triangleright where rangers cooperate against independent poachers.

INRAZ

Partially Observable Stochastic Games

Figure: Simulation of a time-step in a POSG

INRAZ

[RL for complex sequential decision problems](#page-0-0) (*h*) (2) November, 27, 2024 / Régis Sabbadin

- ▶ Each agent has a local history $h_i^t = \left(\frac{d_i^o}{d_i^o}\right)$ $a_1^0, \omega_1^1, d_1^1, \ldots, d_i^{t-1}$ i^{t-1}, ω_i^t .
- \blacktriangleright Local (mixed) policy $\pi_i(h_i)$ $\binom{t}{i} \in \Delta(\mathcal{D}_i)$
- ▶ Transitions and rewards depend on joint decisions
- \triangleright value of a joint policy:

$$
\mathsf{v}_{\pi,i}(h_i^t) = \mathbb{E}_{\pi} \left[\sum_{\tau=t}^H \gamma^{\tau-t} R_i^{\tau} \middle| h_i^t \right] \qquad (1)
$$

 \triangleright A Nash Equilibrium is a joint policy $(\pi_i^*$ $\binom{*}{i}$ *i*∈ \mathcal{I} from which no agent has interest to deviate: ∀*i* ∈ I, ∀π*ⁱ*

$$
v_{\pi_i^*}(h) \geq v_{(\pi_i, \pi_{-i}^*)}(h) \qquad (\mathbf{2})_{23}
$$

Solving Partially Observable Stochastic Games

- ▶ POSG are an extension of both POMDP and normal-form games
- \blacktriangleright How can we compute joint equilibrium policies ?

▶ **Exact solution method:**

- \blacktriangleright Dynamic programming⁶
- ▶ . . . but only for *small* games

▶ **Reinforcement learning approaches?**

- \blacktriangleright There exists Reinforcement Learning approaches⁷
- \blacktriangleright ... which are often used for 2-player games
- \blacktriangleright ... or for for purely competitive/cooperative games

6 [\[Hansen et al., 2004\]](#page-44-0) 7 [\[Yang and Wang, 2021\]](#page-45-1)

INRAZ

The Anti-Poaching Game

Figure: Visualisation of the Anti-Poaching Game

INRAZ

[RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

- \triangleright The game has two types of agents: Rangers $(i \in \mathcal{I})$ and Poachers $(i \in \mathcal{P})$
	- ▶ playing in a grid-world of fixed size
	- ▶ during a finite horizon (0 ≤ *t* ≤ *H*).
- ▶ Rangers can move or skip their turn ∀*i* ∈ R,

 $\mathcal{D}_i = \{\emptyset, \uparrow, \downarrow, \leftarrow, \rightarrow\}$

▶ Poachers can also place traps. ∀*j* ∈ P,

 $\mathcal{D}_i = \{\emptyset, \uparrow, \downarrow, \leftarrow, \rightarrow, \mathsf{place-trap}\}$

The Anti-Poaching Game

Figure: Visualisation of the Anti-Poaching Game **INRAZ**

$▶$ A state $s \in S$, is described by the state of all *"active"* objects in the grid.

- ▶ Each agent receives *noisy* observations of their cell at each timestep.
- \triangleright A poacher is
	- \blacktriangleright rewarded for a prey recovered from a trap,
	- and penalised if he loses a trap, or gets captured.

The reward functions have a specific structure

Rewards with a Specific Structure ...

▶ Rangers have identical reward functions: $\forall i_1, i_2 \in \mathcal{R}$, $\forall s, a, b^a$

 $R_{i_1}(s, a, b) = R_{i_2}(s, a, b)$

▶ Poachers' rewards are independent:

 R_j (*s*, *a*, *b*) = R_j (*s*, *a*, (*b_j*, *b*_{$-j$}))

▶ The game is zero sum i.e. ∀*s*, *a*, *b* :

$$
\sum_{i\in\mathcal{R}}R_i(s,a,b)+\sum_{j\in\mathcal{P}}R_j(s,a,b)=0
$$

 a^a *a* = $(a_i)_{i \in \mathcal{R}}$, joint team action and $b = (b_j)_{j \in \mathcal{P}}$ joint adversary action [RL for complex sequential decision problems](#page-0-0) November, 27, 2024 / Régis Sabbadin

Figure: Interaction graph between agents

Simulation Model for Transitions

Figure: Transition Simulation Model for the Anti-Poaching game

$\tau^t \stackrel{d^t}{\longrightarrow} s^{t+1}$ are $P(s^{t+1} \mid s^t, d^t)$

- \blacktriangleright They are difficult to calculate and store!
	- \blacktriangleright due to the size of the state and action spaces.
- \triangleright So, they are simulated, which allows to
	- \blacktriangleright implement a simulator
	- ▶ use Reinforcement Learning

INRAZ

To facilitate the development of new algorithms for this game,

- ▶ The **Anti-Poaching Environment (APE)** in Python using the PettingZoo API [\[Terry et al., 2021\]](#page-45-2) is provided :
	- ▶ [https://forgemia.inra.fr/chip-gt/](https://forgemia.inra.fr/chip-gt/antipoaching) [antipoaching](https://forgemia.inra.fr/chip-gt/antipoaching)
- \blacktriangleright ... which makes it easy to use with existing RL libraries.
	- ▶ notably RLlib[\[Liang et al., 2018\]](#page-44-1), which proposes multi-agent RL algorithms.

Welcome to Anti-Poaching Environment (APE)'s documentation!

View page source

Welcome to Anti-Poaching Environment (APE)'s documentation!

Fig. 1 Fig. Instance of APE with 2 Rangers (blue) vs 4 Poachers (red)

APE is a PettingZoo environment that implements the Anti-Poaching Game. This is a multi-agent. zero-sum, cooperative-competitive game played between a team of Rangers and some independent Poachers on a grid.

We first quickly introduce Anti-Poaching Environment (APE) and how to use it with the given examples. A more detailed explanation of the examples, notably the integration with RLIib is given in Examples. implementation lists the entire API for APE and the RLlib integration

- . Anti-Poaching Environment (APE)
- o Installation
- Using APE
- **Examples and the RLIIb Interface**
- · Manual policies
- · Rilib examples

INRAZ

Concluding Remarks

POMDP and RL for complex sequential decision problems

- ▶ POMDP form a "classical" powerful representation framework for studying sequential decision problems under uncertainty
- \triangleright POMDP can be conveniently be modelled, using e.g. the Gymnasium API⁸
- \triangleright POMDP are far harder to solve than MDP. they can be solved using off-the-shelf RL librairies⁹ (including deep-RL)
- ▶ POMDPs can also model non- (semi-) Markovian decision processes
- \triangleright Finally, game-theoretic extensions of POMDPs allow to model multi-agent decision problems. Dedicated API+solution algorithms exist¹⁰!

8 <https://gymnasium.farama.org/>

9 For example, RLlib <https://docs.ray.io/en/latest/rllib/>

¹⁰PettigZoo:<https://pettingzoo.farama.org/>

Ħ Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for partially observable stochastic games. In AAAI, volume 4, pages 709–715.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., F. Jordan, M. I., and Stoica, I. (2018). Rllib: Abstractions for distributed reinforcement learning. In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3059–3068. PMLR.

- 螶 Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A., Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch, C., Perez-Vicente, R., et al. (2021). Pettingzoo: Gym for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–15043.
- Yang, Y. and Wang, J. (2021). F.

An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective. arXiv:2011.00583 [cs].

